
Ubiquity: Designing a Multilingual
Natural Language Interface

Michael Yoshitaka Erlewine
Mozilla Labs

650 Castro Street
Mountain View, CA 94041
mitcho@mitcho.com

ABSTRACT
This paper describes the design and implementation of Ubiq-
uity, a multilingual textual interface for the Firefox browser
developed at Mozilla Labs. The Ubiquity interface facili-
tates rapid information retrieval and task execution in the
browser, leveraging existing open web APIs. The impor-
tance of offering equivalent user experiences for speakers of
different languages is reflected in the design of Ubiquity’s
new natural language parser, described here. This paper
also aims to advocate the further development of equipo-
tent multilingual interfaces for information access.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—
human information processing; H.5.2 [Information Inter-
faces and Presentation]: User Interfaces—natural lan-
guage; I.2.7 [Artificial Intelligence]: Natural Language
Processing—language parsing and understanding

General Terms
Design, Experimentation, Human factors, Languages

1. INTRODUCTION
Language continues to be one of the greatest barriers to

open information access on the internet. The participation
of ever more diverse linguistic communities on the web has
not only created great linguistic divides in web content, but
has also naturally resulted in a multitude of disparate tools
created within each community, leaving such projects less
able to benefit from each others’ innovations. While much
effort and increased attention have been devoted to the de-
velopment of multilingual corpora and resources, less atten-
tion has been given to guaranteeing that users with different
linguistic backgrounds can use the same quality tools to ac-
cess that information. As part of Mozilla’s goal to make the
internet experience better for all users [8], Ubiquity aims
to bring a new form of interactivity into the browser which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors and/or a fee.
SIGIR Workshop on Information Access in a Multilingual World July 23,
2009 Boston, Massachusetts USA

treats user input in different languages equally. Ubiquity
offers a platform for rapid information access, with no lan-
guages treated as second-class citizens.

The desire of users to access the internet using an interface
in the language most natural to them is reflected in Mozilla’s
latest Firefox browser release which shipped in over 70 lan-
guages, each localized by a team of volunteers. The goal of
fulfilling this desire is particularly pertinent—and challeng-
ing—in the case of a natural language interface.

Ubiquity was born of the Humanized Enso product (http://
www.humanized.com/enso/), but is now an open-source com-
munity project, with dozens of contributors and active testers.
It is available for download at http://ubiquity.mozilla.com
and can be installed on the Firefox browser. Similar pop-
ular text-based command interfaces which are overlaid on
GUI include Quicksilver (http://www.blacktree.com) and
GNOME Do (http://do.davesbd.com/), but neither of them
attempts a natural language syntax, nor do they support lo-
calization of their parser and keywords.

2. TOWARDS A NATURAL INTERFACE

2.1 Features of a Natural Syntax
The lead of Ubiquity development Aza Raskin argues in

his 2008 ACM interactions paper that text-based interfaces
can be more humane than overextended graphical interfaces
[10].1 Graphical interfaces are easy to learn and apply for
concrete tasks but do not scale well with additional func-
tionality and lack the precision required to communicate
abstract instruction. While numerous text-based computer
interfaces exist, they have been deemed too difficult for lay
users. Raskin argues that textual interaction does not en-
tail these difficulties per se; rather, they are products of
their oft-times stilted grammars. In reconsidering the text-
based interface, ease and familiarity built into the interface
are key. A subset of natural language is thus a clear winner.

Many programming and scripting languages—themselves
interfaces to instruct the computer—make use of keywords
inspired by natural languages (most often English). Many
simple expressions neatly mirror a natural language (1a) but
more complex instructions will quickly deviate (1b).

(1) a. print "Hello World" (Python)

b. print map(lambda x: x*2, [1,2,3])

1The term “humane” is used in this paper to describe
human-computer interfaces which are “responsive to human
needs and considerate of human frailties” [12] (see also [11]).

One valiant effort to facilitate near-natural language in-
struction has been AppleScript, which enables complex Eng-
lish-like syntax (as in 2) and originally was planned to sup-
port similar Japanese and French “dialects.”

(2) print pages 1 thru 5 of document 2 (AppleScript)

As a full-featured scripting language, however, more com-
plex expressions push beyond the natural language metaphor
and introduce their own idiosyncrasies. Bill Cook, one of the
original developers of AppleScript, notes “in hindsight, it is
not clear whether it is easier for novice users to work with a
scripting language that resembles natural language, with all
its special cases and idiosyncrasies” [5]. Raskin notes that
this is precisely what must be addressed in designing a hu-
mane text-based interface: “if commands were memorable,
and their syntax forgiving, perhaps we wouldn’t be so scared
to reconsider these interface paradigms” [10].

In designing an internationalizable natural language in-
terface, we can conclude that it is not enough to use natural
language keywords and mimic its syntax. The grammar
must never conflict with a user’s natural intuitions about
their own language’s syntax—a goal I call natural syntax.
While a user can’t expect such an interface to understand
every natural language command, a good rule of thumb is
that multiple natural alternatives for a given intent are inter-
preted in the same way. For example, consider the examples
(3) in Japanese, a language with scrambling.2

(3) a. 太郎に
Taro-ni
Taro-dat

ボールを
ball-o
ball-acc

投げろ
nagero
throw-imper

b. ボールを
ball-o
ball-acc

太郎に
Taro-ni
Taro-dat

投げろ
nagero
throw-imper

Both sentences are valid expressions for the command
“throw a ball to Taro.” An interface with a natural syn-
tax must understand either both of these inputs or, if for
example the interface does not understand the verb nagero,
neither of them. To understand one but not the other goes
against the tenet of natural syntax.

2.2 Commands in Ubiquity
Ubiquity actions are requests for actions or information,

corresponding functionally to the formal clause type of “im-
perative” [9], although they may manifest in forms tradition-
ally characterized as “imperative,” “infinitive,” or “subjunc-
tive,” depending on the language [7]. No vocative is entered
as the addressee is always the computer, nor do we handle
negation,3 leaving Ubiquity input to simply be composed
of a single verb and its arguments (if any). Some example
English Ubiquity actions include:

(4) a. translate hello to Spanish—previews the text
“hola.” On execution, inserts the text “hola” in
the active text field.

2Note that the Japanese examples are given with spaces
between words to facilitate the glosses. Japanese does not
normally place spaces between words.
3When negative imperative meanings are desired, verbs
which lexicalize the negative meaning are chosen, e.g.
prevent, turn off, etc.

Ubiquity parser Lexicon of
active verbs

Candidate parses:
{ verb: translate,
 args: {object: "hello", goal: "Spanish"} }
{ verb: translate,
 args: {object: "hello to spanish"} }

...

candidate
selection

action execution
verb.execute()

preview/information display
verb.preview()

Figure 1: Schematic diagram of user interaction
with Ubiquity.

b. email hello to John—on execution, composes
a new email to contact John with message body
“hello.”

c. map Tokyo—previews a map of Tokyo using the
Google Maps API. The image can then be in-
serted into the page.

Verbs are written in JavaScript. Each verb may specify a
preview() method which displays some information to the
user or gives a preview of the action to be executed and an
execute() method which carries out the intended action.

In order to avoid ambiguity, a list of possible parses is pre-
sented to the user for confirmation before execution. Sug-
gestions give a visual indication of the parsing. A scoring
mechanism is used to bring more likely candidates to the
top, taking user input and browser use habits into consider-
ation.

3. ADDRESSING THE NEEDS OF MULTI-
LINGUAL ACCESS

With the requirements and goals of the project as laid
out in section 2, certain architectural choices were made in
designing the parser in order to support multiple languages
equipotentially. In this section I will review the unique fea-
tures of our parser and platform which enable equal infor-
mation access and rapid localization.

3.1 Identifying Arguments by Semantic Role
Ubiquity commands’ ease of creation is a great strength

for the platform, with many contributors around the world
creating and sharing their own verbs as well as writing new
verbs for personal use. In order to let users of different lan-
guages benefit equally from the platform, however, there is a

Figure 2: Equivalent Ubiquity queries in three languages: English, French, and Japanese. Note that the
two suggestions returned in each case are semantically different, reflecting the ambiguity between translating
“hello to span” into an as yet unspecified language and translating “hello” into the Spanish language.

need to internationalize the verbs themselves. Verbs include
some strings which must be translated, such as the verb’s
name, but they also include a specification of the type of
arguments it accepts, known as the syntactic frame of the
verb. For example, in English an email verb may take a
direct object and a recipient introduced by the preposition
“to,” while a translate verb may take an arbitrary direct
object, a goal language marked by “to,” and a source lan-
guage marked by “from.”

In order to facilitate this localization, we chose to let verbs
specify their syntactic frames using abstract semantic roles
such as object, goal, instrument, position, etc. which are
morphosyntactically coded in most languages.4 For exam-
ple, suppose an English-speaking contributor wrote a verb
called move, whose action was to move an object from one
location to another. Its syntactic frame could be specified
as follows, where physical object and location are noun
types which specify a class of arguments and their associated
semantic forms.

{ object: physical_object,
source: location,
goal: location }

The command author could then use this command in
English, entering input such as (5). The parser recognizes
the English prepositions “to” and “from” as corresponding
to the goal and source roles (underlined below), and rec-
ognizes the unmarked argument as an object.

(5) move truck from Paris to Beijing

(6) トラックをパリから北京へmove

However, given a set of localized noun types, the exact
same command code could be used with the Japanese parser
by entering the input (6). Here, the parser recognizes that
the postpositions “を,” “へ,” and “から” mark object, goal,

4In our use, “semantic role” is equivalent to the related no-
tions of “grammatical function” and “thematic relation.” An
inventory [2] was chosen based on [6] and subsequent cross-
linguistic work.

Table 1: Argument-first Suggestions
Sample argument parses suggested verbs
{ object:…, goal:… } email, send
{ object:…, instrument:… } search, look up
{ object:…, source:…, goal:… } move, translate

and source arguments, respectively. The only manual local-
ization required for the move command, then, is the transla-
tion of the verb name “move” itself. As shown by this exam-
ple, the specification of arguments using abstract semantic
roles supports the rapid and, indeed, semi-automatic local-
ization of commands, ensuring that users of all languages
benefit from individual improvements to the Ubiquity plat-
form’s functionality.

3.2 Argument-first Suggestions
In parsing Ubiquity input, a key task is the identification

of the verb, if any. In many languages the verb naturally
comes at the beginning of the sentence (see English examples
in 4). In this case, as the verb can be identified early in the
user input, we can then annotate the candidate parses with
information on the missing arguments to guide the user in
entering the rest of their input (see figure 2). However,
not all languages enter the verb first in commands. Some
languages are strictly verb-final (e.g. Japanese), while in
some other languages (e.g. German, Dutch, Modern Greek)
it is equally valid to express commands using the imperative
or subjunctive verb form at the beginning of the sentence,
or using the infinitive at the end of the sentence.

Rather than being discouraged by this conundrum, thought
was given to how we can leverage the unique qualities of
verb-final (or argument-first) input to make a more humane
and supportive interface. As different verbs in our lexicon
specify different syntactic frames, by parsing arguments and
identifying semantic roles in the input before the verb is
known, we can then suggest verbs to the user which match
that particular argument structure (see examples in table
1 of some such suggestions). This smart argument-first
suggestion aids in command discoverability by suggesting
verbs for a given target which the user may not have known

existed. This approach crucially takes advantage of the
argument-first input and offers unique value and increased
usability to users with verb-final languages.

Note also that the suggestion of verbs based on argument-
only input may also be useful for regularly verb-initial lan-
gauges such as English. Studies of general interactive sys-
tems concur that noun-verb (or object-action) paradigms
result in error reduction, increased speed, and better re-
versibility during input [11]. For these reasons, argument-
first suggestions are supported in Ubiquity for all languages
equally.

3.3 Minimal Language Descriptions
The Ubiquity parser attempts to make as much of its

parser algorithm universal as is practical, taking a page from
the Principles and Parameters framework in generative lin-
guistics.5 A single universal parser was designed, with set-
tings for different languages built on top of that base [1].
The settings for each language are written in JavaScript and
range from ten to thirty lines of code. Various hooks exist
in the code for language-specific processing when necessary,
but the majority of the language settings are simply lists
of special lexical items such as the prepositions or postpo-
sitions in a language. In this way, for the limited range
of data which constitute Ubiquity input, the very difficult
problem of writing a language-specific parser is reduced to
little more than some native speaker consultation and string
translation.

4. EVALUATION METRICS
As an open-source community project, the success of Ubiq-

uity must be evaluated in terms of developer involvement as
well as user adoption. The design choices laid out here are
intended to lower the barrier of contributing to Ubiquity’s
localization, and the level of localizer engagement is a direct
reflection of the facility or difficulty of contributing to in-
dividual parser language setting files and localizations. An
initial survey of this metric can be interpreted as optimistic,
with language settings having been written for ten languages
and Ubiquity’s built-in commands having been completely
localized into three of those languages as of this writing,
even before widespread public release of the new parser.

Approximate user adoption rates can be calculated based
on download and update counts, though this does not cur-
rently directly reflect active usage of Ubiquity nor give us
much insight into its different use cases. Current user adop-
tion is expected to be limited by the fact that previous ver-
sions of Ubiquity were almost exclusively suited for English
use, and we expect a slow uptick in usage and interest by
users in other languages which we are beginning to sup-
port. Future collaboration with the Mozilla Labs’ Test Pi-
lot project [4] to collect anonymous user behavior data in
Ubiquity is also being planned [3]. This data will help yield
more accurate usage statistics, including usage breakdowns
by language, as well as yield valuable information on parser
accuracy and user interaction patterns.

5It is worth noting that this architectural choice also comple-
mented the object-oriented architecture and Don’t Repeat
Yourself design goals of the project.

5. CONCLUSIONS
Further globalization of the web without serious consider-

ation of multilingual information access could spur the fur-
ther fragmentation of information and ideas. Equal access
to information will require more than just cross-language
search and retrieval systems, but also universal interfaces
which are designed for rapid localization and treat all lan-
guages equally.

In this paper I outlined some of the design features of
Ubiquity’s interface and natural language parser which bring
the system closer to this goal. Formal approaches to the
study of language were applied in order to design a system
which can be extended to a wide range of languages. As of
this writing, settings for ten languages have been written for
Ubiquity, while the community process of setting technical
standards for verb and noun type localization is in progress.

Ubiquity is quickly becoming a compelling text-based in-
terface for both advanced and casual users. The forgiv-
ing “natural syntax” philosophy and the smart suggestion
of verbs and arguments to the user help make Ubiquity a
humane interface which cooperates with users rather than
confounds them. These qualities make Ubiquity a natu-
ral choice of interface platform for multilingual and cross-
languge information access applications.

6. ACKNOWLEDGMENTS
Thank you to comments from Aza Raskin and Jonathan

DiCarlo at Mozilla and audiences at BarCamp Tokyo; Chuo,
Waseda, and Keio Universities; Tokyo 2.0; Tokyo Institute
of Technology; as well as comments on related material on
my blog (http://mitcho.com/blog/).

7. REFERENCES
[1] Parser 2 - MozillaWiki. https://wiki.mozilla.org/Labs/

Ubiquity/Parser 2 .
[2] Semantic Roles in Parser 2 - MozillaWiki.

https://wiki.mozilla.org/Labs/Ubiquity/Parser 2/Se-
mantic Roles.

[3] Ubiquity Roadmap - MozillaWiki.
https://wiki.mozilla.org/Labs/Ubiquity/Roadmap.

[4] C. Beard. Introducing test pilot. https://labs.mozilla.
com/2008/03/introducing-test-pilot/.

[5] W. R. Cook. Applescript. In The Third Conference on
the History of Programming Languages, 2007.

[6] C. J. Fillmore. Types of lexical information. Reidel,
Dordrecht, 1969.

[7] S. Iatridou. De modo imperativo. Lecture notes, ENS,
Paris, September 2008.

[8] Mozilla Foundation. The Mozilla manifesto, v0.9.
http://www.mozilla.org/about/manifesto.en.html .

[9] P. Portner. The semantics of imperatives within a
theory of clause types. In Proceedings of Semantics
and Linguistic Theory, volume 14, 2005.

[10] A. Raskin. The linguistic command line. interactions,
15(1):19–22, 2008.

[11] J. Raskin. The Humane Interface: New Directions for
Designing Interactive Systems. Addison-Wesley, 2004.

[12] A. Varma. Humanized > Why ‘humane’ is a better
word than ‘usable’. http://humanized.com/weblog/
2006/06/01/why humane is a better word than usable/.

	Introduction
	Towards a Natural Interface
	Features of a Natural Syntax
	Commands in Ubiquity

	Addressing the Needs of Multilingual Access
	Identifying Arguments by Semantic Role
	Argument-first Suggestions
	Minimal Language Descriptions

	Evaluation metrics
	Conclusions
	Acknowledgments
	References

