Counterexpectation, concession, and free choice in Tibetan

Michael Yoshitaka Erlewine
National University of Singapore

1. Introduction

This paper investigates the uses of the Tibetan expression yin.na’ang and its compositional syntax/semantics, with data from original fieldwork. Descriptively, yin.na’ang has three distinct uses: it is a counterexpectational discourse particle, translated as ‘but’ or ‘however,’ as in (1); it is a concessive scalar focus particle (CSP; see e.g., Lahiri 2010, Crnić 2011) as in (2); and it forms universal free choice items (∀-FCI) from wh-words, as in (3).

(1) Counterexpectational ‘but/however’:

bKra.shis dge.rgan red. Yin.na’ang spyang.po mi-dug.
Tashi teacher AUX YIN.NA’ANG clever NEG-AUX
‘Tashi is a teacher. However, [he] isn’t smart.’

(2) Concessive scalar particle (CSP):

book one YIN.NA’ANG read-COND exam succeed-IMPF-AUX
‘[If [you] read even/at least [one]F book], [you] will pass the exam.’

(3) Wh universal free choice item (∀-FCI):

Nor.bu [(kha.lag) ga.re yin.na’ang] za-gi-red.
Norbu food what YIN.NA’ANG eat-IMPF-AUX
‘Norbu eats anything / any food.’

*For earlier comments and discussion, I thank Maayan Abenina-Adar, Rahul Balusu, Kenyon Branan, James Collins, Chris Davis, Kai von Fintel, Danny Fox, Hadas Kotek, Elin McCready, Keely New, Ryan Walter Smith, as well as audiences at NELS 50, the 2020 LSA, and the National University of Singapore.

My description here reflects the judgments of three speakers in the Tibetan community of Dharamsala, India. All three grew up with Tibetan as their first language, in Tibet and/or in India. I thank my speakers, Kunga Choedon, Pema Yonden, and Tenzin Kunsang, for their patience and support.

Tibetan data is reported in the Wylie orthography. Periods mark syllable boundaries where there are not morpheme boundaries, following the practice in Garrett 2001.
Michael Yoshitaka Erlewine

\textit{Yin.na’ang} is transparently composed of three ingredients: the copula \textit{yin} \[\text{conditional ending \textit{na}}, \text{and scalar focus particle ‘even’ \textit{yang}} \text] (4).

(4) \text{\textit{yin}} + \text{\textit{na}} + \text{\textit{yang}} = \text{\textit{yin.na.yang}} > \text{\textit{yin.na’ang}} > \text{\textit{yin.na’i}}

\text{\textit{yin.na’ang}} is a contraction of \textit{yin.na.yang}, which is also used. In speech, \textit{yin.na’ang} also appears as \textit{yin.na’i}, reflecting the general reduction of \textit{yang} to \textit{ya’i} in speech (Tournadre and Sangda Dorje 2003:409). I follow Goldstein (2001:1000) in generally referring to \textit{yin.na’ang} as the expression’s canonical form.

Here I pursue the hypothesis that all three of these uses of Tibetan \textit{yin.na’ang} derive transparently from the independent semantics of these three ingredients in (4). That is, \textit{yin.na’ang} can be thought of as, literally, “even if it’s...” Indirect evidence for this decompositional approach comes from the fact that this same basic phenomenon—the combination of a copula, conditional, and scalar ‘even’ particle being used together to form a counterexpectational particle, CSP, and \textit{wh}-FCIs—is also attested in a number of unrelated languages, although with minor differences in the range of uses:

(5) \begin{tabular}{|c|c|c|c|}
\hline
\text{COP-COND-EVEN} & \text{particle} & \text{focus particle} & \text{\textit{wh}-quantification} \\
\hline
\text{Tibetan} & \text{\textit{yin-na-yang}} & \text{‘but’} & \text{CSP} & ∀-FCI \\
\text{Kannada} & \text{\textit{aad-ar-uu}} & \text{‘but’} & \text{CSP} & ∀-FCI, ∃-FCI, NPI \\
\text{Japanese} & \text{\textit{de--mo}} & \text{‘but’} & \text{CSP, ‘for example’} & ∀-FCI \\
\hline
\end{tabular}

See especially Balusu (this volume) for discussion of Kannada \textit{aad-ar-uu}. See Watanabe 2013 on the additional use of Japanese \textit{demo} as a focus particle, translated as ‘for example.’ For recent discussion of Japanese \textit{wh}-FCI with \textit{demo}, see Hiraiwa and Nakanishi. To appear. Here I concentrate on describing and explaining the semantics of Tibetan \textit{yin.na’ang} and leave the extensions of my analysis to these other languages for future work.

2. **Counterexpectational \textit{yin.na’ang}**

I begin by describing and deriving the discourse particle use of \textit{yin.na’ang}. The contrast in (6) shows that \textit{yin.na’ang} marks the following proposition ((6a) and (6b) below) as counter to our expectations, given the preceding information.

(6) **Counterexpectation is required:**

\begin{align*}
\text{Kho kha.lag mang.po za-gi-red.} & \quad \text{Yin.na’ang...} \\
\text{he food a.lot eat-IMPF-AUX YIN.NA’ANG} & \\
\text{‘He eats a lot of food. But...’} & \\
\end{align*}

\text{2}In root clauses, the copula \textit{yin} indexes ego evidentiality, in contrast to indirect evidential copula \textit{red}. However, as Garrett (2001) shows, these evidentiality distinctions are neutralized in non-root clauses such as in conditional clauses, where \textit{yin} is always used; see Garrett 2001:254.

\text{3}Hiraiwa and Nakanishi (to appear) propose that the Japanese surface form \textit{demo} is a conventionalized contraction of \textit{dear-te-mo}, which is transparently \text{COP-COND-EVEN}.
Counterexpectation, concession, and free choice in Tibetan

a. rgyags.pa chags-gi-ma-red. fat becomes-IMPF-NEG-AUX ‘[he] doesn’t gain weight.’

b. #rgyags.pa fat chags-gi-red. become-IMPF-AUX ‘[he] gains weight.’

The use of *yin.na’ang* must make reference to a salient proposition p, which has been asserted prior by the same speaker or another speaker, and not denied. The expression “*Yin.na’ang* q” then commits the speaker to q, while reflecting an attitude that q is counter to their expectations given p. Following Ippolito (2007) on English *still* and Balusu (this volume) on Kannada *aad-ar-uu*, I propose that *yin.na’ang* takes an unpronounced propositional anaphor as an argument, to refer to this preceding proposition p:

(7) \[[pro_{\not p}]_F \text{Yin-na} \text{ COP-COND EVEN} \]

Literal LF: EVEN (if it’s $[p]_F$, q)

Now let us consider the interpretation of (7). I take P to be a set of relevant alternatives to p: propositions $p’$ where the conditional propositions “if $p’$, q” are relevant to consider. The scalar particle EVEN will require that the prejacent conditional “if p, q” be less likely than “if $p’$, q,” for all $p’ \in P$. This scalar condition requires very low credence in “if p, q,” which is supported by an expectation that “if p, likely not q.” In this way, the utterance of (7) signals and reinforces the expectation that “if p, likely not q.” What we’ve done here is to use the scalar particle EVEN to build a concessive ‘although/even though’ relation from a causal one, as is cross-linguistically common; see especially König 1991:82–83.

Finally, we note that the at-issue content of (7) is the conditional claim “if p, q,” but the speaker of (7) becomes committed to q. First, consider the case where p is a public commitment of the speaker’s. By asserting “if p, q,” we reason by Modus Ponens that the speaker is also committed to q. Alternatively, consider the case where p is not a public commitment of the speaker’s. This is possible if another speaker proffers p and it is still on the table, but the speaker has not yet committed to it, and may not believe it. In this case, suppose that the set P exhausts all relevant possibilities worth considering, for what would lead to q. This results in what Bennett (1982) calls an “introduced” even if conditional; in this case, the assertion of “EVEN if $[p]_F$, q” will also implicate the truth of the consequent q. See von Fintel 1994:§5.3.3 for discussion.

Yin.na’ang can also be used in cases of semantic opposition, as in (8). English *but* is also used in such cases, as in the translation for (8); see Toosarvandani 2014 and citations there. Here, pace Toosarvandani on English *but*, I suggest that we can reduce the scalar opposition use in (8) to the counterexpectational use above by assuming a local homogeneity expectation: in (8), because Tenzin is tall, we expect Tashi to also be tall, licensing the use of *yin.na’ang*.

(8) *Yin.na’ang* reflecting semantic opposition:

bsTan.dzin gzugs.po ring.po ’dug. *Yin.na’ang* bKra.shis chung-chung ’dug. Tenzin body long AUX YIN.NA’ANG Tashi small-RED AUX ‘Tenzin is tall. But Tashi is short.’
3. Aside: The syntax of *yin.na’ang* in argument position

Before we turn to the use of *yin.na’ang* to form FCIs and as a CSP, I will briefly discuss the external syntax of these expressions. In both of these uses, *yin.na’ang* appears to encliticize to a nominal expression: a *wh*-word for FCIs and a focused or focus-containing phrase in the CSP use. The resulting structure may occupy an argument position, as is especially clear in (9), where the whole *wh-yin.na’ang* FCI bears a dative case marker or postposition.

(9)

<table>
<thead>
<tr>
<th>Wh-yin.na’ang FCI with dative case:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad.ma [(phru.gu) su _yin.na’ang]=la skad.cha bshad-kyi-red.</td>
</tr>
<tr>
<td>Pema child who YIN.NA’ANG=DAT speech talk-IMPF-AUX</td>
</tr>
<tr>
<td>‘Pema talks to anyone / any child.’</td>
</tr>
</tbody>
</table>

Such structures are at first glance problematic for the hypothesis I pursue here, that all these expressions of the form X=yin.na’ang are in fact concessive conditional clauses.

I propose that such a X=yin.na’ang structure in argument positions is interpreted at LF as adjoined to the containing clause, with its surface position interpreted as a pronoun. The LF structure for the two versions of (9) above, with and without the nominal ‘child,’ are given in (10) below:

(10)

```
 a. Literal (9): Pema talks to [even if {it/the child} is who] ⇒ 

 b. LF: [even if {it/the child}7 is who], Pema talks to them7 ⇒ 
     EVEN [if {it/the child}7 is who, Pema talks to them7] 
```

The pronoun in the X=yin.na’ang position at LF (‘them’ in (10)) is coreferential with a null pronoun (‘it’) or definite description (‘the child’) which is the first argument of the copular relation in the conditional clause. This coreference relationship is encoded here as coindexation (the shared index 7), the effects of which we will observe in the following sections.

In this way, the X=yin.na’ang structure can be thought of as a clause that occupies an argument position and describes that argument, similar to a head-internal relative clause or amalgam (Lakoff 1974). Similar analyses have been developed by Shimoyama (1999) for the syntax and interpretation of Japanese head-internal relatives and by Hirsch (2016) for English ever free relatives in argument position.

4 As the study of donkey pronouns has made clear (see e.g., Groenendijk and Stokhof 1991), conditionals lead us to consider different possible dynamic updates or referential assignments. Intuitively, I take the conditional to quantify over different assignments which vary the referent of index 7 in both the antecedent and consequent clauses.

I furthermore follow Lewis (1975), Kratzer (1979), and others in taking conditionals to encode a restriction on the set of possible worlds or situations that a modal/temporal operator in the consequent clause quantifies over. To unify these two intuitions, concretely, here we can model modal/temporal operators—and thus their conditional restrictors—as quantifying over pairs of worlds/situations and assignment functions.

See also Erlewine (2020) for another approach, where both nominals share their nominal restrictor rather than a referential index, and referential variance is introduced by situation binding.
I now turn to the use of *yin.na’ang* as a focus particle. Specifically, I argue that *yin.na’ang* expresses what has been described as “concessive scalar” semantics. Concessive scalar particles (CSPs) are licensed in a range of non-veridical environments, associate with a focus which is low on a contextual scale, and signal that that point on the scale should be (or have been) easy to attain—a quality that Kadmon and Landman (1993) describe as a “settle for less” (p. 385) interpretation, also attested with English *even* in some cases. CSPs may be translated as (scale-reversed) ‘even’ in some environments, but are better translated as ‘at least’ in some environments. Here I offer a first look at the distribution and interpretation of concessive scalar *yin.na’ang* and sketch an analysis for its behavior.

First, we observe that CSP *yin.na’ang* is licensed by negation in (11). Note that, without negation, example (11) is judged as unacceptable. In this case, *yin.na’ang* behaves akin to scale-reversed ‘even’.

(11) **CSP *yin.na’ang* licensed by negation:**

\[\text{bKra.shis ang [gsum]}_{\text{F}}-\text{pa yin.na’i} \quad \text{len-*(mi)}-’dug. \]

\[\text{Tashi number three-ORD YIN.NA’ANG receive-NEG-AUX} \]

‘He didn’t **even** get [third]F place.’

CSP *yin.na’ang* is also licensed in conditionals, as in (12), based on example (2) above. Here we observe the CSP’s “settle for less” quality more clearly: reading just one book—the easiest to satisfy, although perhaps not ideals an appropriate focus associate for *yin.na’ang*, but reading three books is not. *Yin.na’ang* in (12) can be translated by ‘at least,’ although *at least* is not similarly limited to the weakest element on the scale. Crnič (2011:106) gives a translation of Slovenian *magari* in a conditional as ‘even (just).’ Such a translation may also be appropriate here.

(12) **CSP *yin.na’ang* licensed by a conditional:**

\[\text{[Dep [gcig/#gsum]}_{\text{F}} \quad \text{yin.na’ang klog-na} \quad \text{yig.tshad mthar.’khyol-gi-red.} \]

\[\text{book one/three YIN.NA’ANG read-COND exam succeed-IMPF-AUX} \]

‘[If you] read **at least** [one/three]F book(s), [you] will pass the exam.’

Finally, *yin.na’ang* is also licensed in imperatives, as in example (13), imagined as a plea to a difficult child. Here too, the “settle for less” quality is quite clear—eating more would be good, but the speaker is willing to accept the addressee eating just a little—and translations with ‘at least’ or ‘even just’ are both appropriate.

(13) **CSP *yin.na’ang* licensed in an imperative:**

\[\text{Kha.lag [tis]}_{\text{F}} \quad \text{yin.na’i za-(dang)}! \]

\[\text{food a little YIN.NA’ANG eat-IMPF} \]

‘Eat **at least** [a little]F food!’
I propose that treating yin.na’ang as the transparent combination of a copula, conditional ending, and EVEN scalar particle—with the syntax presented in section 3—allows us to explain the distribution and interpretation of this CSP use. Again, such a decomposition is also independently motivated for CSPs in Kannada and a number of other dravidian languages (Balusu, this volume) and Japanese. In addition, Lahiri (2010) notes that the Spanish CSP aunque sea is literally a concessive conditional marker aunque ‘even if’ with the subjunctive form of the copular verb sea. The analysis I sketch here is informed by the discussion in Lahiri 2010.

I begin with discussion of example (11), where yin.na’ang is licensed by negation. Following my syntactic proposal in section 3, the LF for (11) will schematically be as in (14a). I assume that the relevant places are limited to first, second, and third. This is reflected in the ordinary semantic value and alternative set denotation (a.k.a. focus-semantic value) of α in (14b). See footnote 4 above on the interpretation of the indexed pronouns in (14b).

(14) a. LF: EVEN [α if it₆’s [third]ₕ place, NEG [Tashi got it₆]]
 b. \[α\]₀ = ^ if it₆’s third place, NEG [Tashi got it₆]
 \[α\]ₐₜ₉ = \{^ if it₆’s n-th place, NEG [Tashi got it₆] : n ∈ \{1, 2, 3\}\}

Assuming that getting first place is less likely—or more noteworthy; see Herburger 2000—than second, and second place is in turn less likely than third, it stands to reason that not getting third place in \[α\]₀ is the least likely of the propositions in \[α\]ₐₜ₉. We thus predict that the scalar inference of EVEN will be satisfied in (14).

In contrast, without the negation in (14), the prejacent will be the most likely or least noteworthy alternative, and thus the scalar inference of EVEN cannot be satisfied. In effect, the scalar particle EVEN serves to explain both the association of yin.na’ang with the weakest element on a scale (the “settling for less” quality) and the need for a licensing operator, such as negation, which reverses orderings by likelihood and noteworthiness.

Next, consider the grammatical variant of example (12), with focus ‘one.’ Here, yin.na’ang is itself inside a conditional clause. Assuming that the conditional clause in yin.na’ang will adjoin to the higher clause at LF, outside of the containing conditional clause, the LF for (12) will be as in (15a).

(15) a. LF: EVEN [α if it₄’s [one]ₕ book, [if you read it₄, you will pass the exam]]
 b. \[α\]₀ = ^ if it₄’s one book, [if you read it₄, you will pass the exam]
 \[α\]ₐₜ₉ = \{^ if it₄’s n books, [if you read them₄, you will pass the exam] : n ≥ 1\}

The prejacent \[α\]₀ claims that, whatever its precise identity, if g(4) is one book and you read it, you will pass the exam. This is a very weak claim—if you read any book, you will pass the exam—and it asymmetrically entails and thus is less likely than every other alternative in \[α\]ₐₜ₉. The scalar inference of EVEN will thus be satisfied, explaining the felicity of this structure. Reading more books is fine too, explaining the availability of an ‘at least’ translation in (12). If instead, the focus ‘one’ in (15) were changed to another numeral, not the weakest on the scale, the scalar inference of EVEN cannot be satisfied. This explains the unacceptability of example (12) above with ‘three’ in place of ‘one.’
Finally, I consider the use of *yin.na’ang* in the imperative (13). The analysis of such examples will depend on one’s assumptions regarding the syntax/semantics of the imperative. Here I sketch one particular approach. I let the conditional clause in *yin.na’ang* adjoin at LF to a position within the content of the imperative speech act operator IMP, and take EVEN to take scope above this position, as in (16).

\[
\text{LF for (13): } \text{EVEN } [\text{IMP } [\text{if it}_3 \text{ is [a little]} \rightarrow \text{food, you eat it}_3]]
\]

If we assume that imperatives do not have truth conditions (*pace* Kaufmann 2012), they cannot be ordered by likelihood or entailment. However, following Herburger’s (2000) more general discussion of even, suppose we adopt a noteworthiness scale, with which we can order possible speech acts. In a context where a stronger request is also appropriate—for example, telling the child to eat a lot, or to eat everything—specifically choosing to request that they eat a little is noteworthy. The scalar inference of EVEN in (16) will accordingly be satisfied, again reflecting the “settling for less” flavor of the CSP.

5. Universal free choice with *wh* + *yin.na’ang*

Finally, I discuss the use of *yin.na’ang* to form universal free choice items (FCI) with *wh*-words. FCIs are licensed in the scope of certain modal/temporal operators or their conditionals, and are prohibited from episodic descriptions. Here I will sketch a compositional semantics for these NPIs, building on my general framework for *wh*-quantification in Alternative Semantics; see Erlewine 2019 for a recent introduction to this work in progress. See Erlewine 2020 for an extended presentation of the proposal in this section.

I start by sketching my analysis using example (3) above, ‘Norbu eats anything,’ without the nominal ‘food.’ (See Erlewine 2020 for discussion with ‘food.’) Following the proposal in section 3 the LF for this sentence will have the basic shape in (17):

\[
\text{a. Literal (3): Norbu eats(IMPF) [even if it’s what] } \Rightarrow \\
\text{b. LF: } \text{EVEN } [\text{IMP } [\text{if it}_5 \text{’s what, Norbu eats(IMPF) it}_5]]
\]

I first address the interpretation of the *wh*-phrase ‘what’ in (17). In the two-dimensional Alternative Semantics framework for focus semantics adopted here, *wh*-words have an alternative set denotation that ranges over its domain, but no defined ordinary value (Ramchand 1997, Beck 2006, Kotek 2019). [\(\alpha\)] in (17a) will thus also be undefined, blocking EVEN from being computed. To repair this issue, I propose the covert [\(\exists\)] operator in (19).

\[
\text{a. } [ga.re \ ‘what’]_o \text{ undefined } \Rightarrow \\
\text{b. } [ga.re \ ‘what’]_{alt} = \{x : x \text{ inanimate}\}
\]

\[
\text{a. } [\exists \alpha]_o = \bigvee [\alpha]_{alt} \\
\text{b. } [\exists \alpha]_{alt} = [\alpha]_{alt}
\]

The effect of [\(\exists\)] on the ordinary value is similar to that of the [\(\exists\)] operator defined in Kratzer and Shimoyama 2002 and Alonso-Ovalle 2006 but these works employ a one-dimensional Hamblin semantics. The [\(\exists\)] operator in (19) defines an ordinary value but simply passes up its complement’s alternative set, which will be important for modeling this and many other cases of *wh*-quantification. See Erlewine 2019.
Placing the covert \exists in the LF (17b), we yield (20a). Following Arregui et al. 2014 and citations there, I will model imperfective aspect as a kind of universal modal that quantifies over a particular set of situations, S. Taking modals to quantify over situation-assignment pairs, which are then restricted by the conditional (see footnote 4), α in (20a) will have the ordinary and alternative set denotations in (20b).

\begin{align*}
(20) & \quad \text{a. LF: } \text{EVEN } [\alpha \text{ if } \exists [\text{its' what}], \text{Norbu eats(IMP) its] }] \quad \text{(revised from (17b))} \\
& \quad \text{b. } [\alpha]^0 = \land \forall (s, g) [s \in S \land g(5) \text{ exists, inanimate } \rightarrow \text{Norbu eats } g(5) \text{ in } s] \\
& \quad [\alpha]^\text{alt} = \{ \land \forall (s, g) [s \in S \land g(5) = x \rightarrow \text{Norbu eats } g(5) \text{ in } s] : x \text{ inanimate} \}
\end{align*}

Informally, the prejacent $[\alpha]^0$ claims that, in all relevant situations with assignment g, if $g(5)$ exists and is inanimate, Norbu eats it in that situation. Notice that this is a reasonable paraphrase for the \forall-FCI: whatever it is, Norbu eats it. There was no need here to stipulate the universal force of the \forall-FCIs; universal force is the natural consequence of allowing the coindexed referents to vary, parasitic on the modal’s universal quantification.

I furthermore claim that the scalar particle EVEN that is a part of yin.na’ang systematically ensures that the relevant quantification will always be universal. Let’s first see how EVEN is satisfied in (20) above. We observe that each alternative in $[\alpha]^\text{alt}$ is itself a conditional proposition, similar to $[\alpha]^0$, but restricted to the case of a particular inanimate individual. The prejacent $[\alpha]^0$ is stronger than all of the propositions in $[\alpha]^\text{alt}$, asymmetrically entailing them all, and thus EVEN in (20a) will be satisfied.

Now consider the case where the relevant modal operator is a possibility modal instead. I illustrate this possibility schematically in (21), with a hypothetical variant of (20) with a possibility modal in place of the universal imperfective operator. Notice that the prejacent $[\alpha]^0$ in (21b) is now systematically weaker than, and asymmetrically entailed by, all of its alternatives in $[\alpha]^\text{alt}$. The scalar inference of EVEN in this case can never be satisfied, leading the structure in (21a) to be judged as ungrammatical.

\begin{align*}
(21) & \quad \text{a. LF: } \text{EVEN } [\alpha \text{ if } \exists [\text{its' what}], \text{Norbu CAN eat its] } \\
& \quad \text{b. } [\alpha]^0 = \land \exists (s, g) [s \in S \land g(5) \text{ exists, inanimate } \land \text{Norbu eats } g(5) \text{ in } s] \\
& \quad [\alpha]^\text{alt} = \{ \land \exists (s, g) [s \in S \land g(5) = x \land \text{Norbu eats } g(5) \text{ in } s] : x \text{ inanimate} \}
\end{align*}

Wh-yin.na’ang FCIs can however also cooccur with possibility modals, as in (22) below. However, I claim that in all such cases, the conditional in yin.na’ang associates with a higher universal operator—in this case, again an imperfective operator. If instead the conditional restricts the modal base for the possibility modal, we would predict wh-yin.na’ang to descriptively have existential force, but lead to a configuration as in (21) where EVEN cannot be satisfied. In reality, the interpretation of (22) is unambiguous, with wh-yin.na’ang being a universal FCI taking scope over the possibility modal. This result is enforced by the scalar particle in yin.na’ang.
Counterexpectation, concession, and free choice in Tibetan

(22) **Wh-yin.na’ang FCI with deontic possibility modal:**

Nga-’i khyi [(kha.lag) ga.re yin.na’ang] za-chog-gi-red.
1sg-GEN dog food what YIN.NA’ANG eat-ALLOWED-IMPF-AUX

‘My dog is allowed to eat anything / any food.’ ∀-FCI > allowed

In addition, we expect the scalar inference of **EVEN** to be unsatisfiable with an episodic description, with no modal quantification at all. This explains the infelicity of the *Wh-yin.na’ang* FCI in examples such as (23):

(23) **Wh-yin.na’ang ungrammatical in episodic descriptions:**

Tashi now food what YIN.NA’ANG eat-finish-AUX

Intended: ≈ ‘Tashi finished eating any food now.’

The proposal here represents a new approach to universal free choice, presented in greater detail in [Erlewine 2020](https://mitcho.com/research/tibetan-fc.html). I claim that the universal force of *wh-yin.na’ang* ∀-FCIs is parasitic on the universal force of the modal operator which is restricted by *yin.na’ang*’s conditional clause. The scalar particle **EVEN** in *yin.na’ang* then enforces that this quantification is universal, indirectly ensuring that the FCI will itself will descriptively be universal.

References

Lahiri, Utpal. 2010. Some *even’s are even (if) ... only*: The concessive “even” in Spanish. *Ms., University of the Basque Country, Vitoria-Gasteiz.*

Michael Yoshitaka Erlewine
mitcho@mitcho.com