Definiteness and Indefiniteness in Burmese

Meghan Lim Michael Yoshitaka Erlewine
e0053320@u.nus.edu mitcho@nus.edu.sg
Definiteness and indefiniteness in Burmese

• We report on the expression of (in)definiteness for singular referents in Burmese, a language without articles.

• All Burmese data is obtained from original elicitation with four native Burmese speakers from Yangon, who currently reside in Singapore.
We report on the expression of (in)definiteness for singular referents in Burmese, a language without articles.

All Burmese data is obtained from original elicitation with four native Burmese speakers from Yangon, who currently reside in Singapore.
Definiteness and indefiniteness in Burmese

• In the basic case, bare nouns are definite and indefinites require the numeral ‘one.’

• In addition, Burmese distinguishes anaphoric vs unique definites in the availability of demonstratives, similar to Mandarin (Jenks 2018); see also Schwarz 2009, 2013.

• This picture is complicated in object position, where bare nouns can be indefinite for some speakers, under certain circumstances. We analyze this as a form of noun incorporation.
Definiteness and indefiniteness in Burmese

• In the basic case, **bare nouns are definite and indefinites require the numeral ‘one.’**

• In addition, **Burmese distinguishes anaphoric vs unique definites** in the availability of demonstratives, similar to Mandarin (Jenks 2018); see also Schwarz 2009, 2013.

• This picture is complicated in **object position**, where **bare nouns can be indefinite** for some speakers, under certain circumstances. We analyze this as a form of noun incorporation.
In the basic case, bare nouns are definite and indefinites require the numeral ‘one.’

In addition, Burmese distinguishes anaphoric vs unique definites in the availability of demonstratives, similar to Mandarin (Jenks 2018); see also Schwarz 2009, 2013.

This picture is complicated in object position, where bare nouns can be indefinite for some speakers, under certain circumstances. We analyze this as a form of noun incorporation.
• We develop an analysis based on the Jenks 2018 analysis of Mandarin bare definites, with a new approach to the numeral ‘one,’ which makes ‘one’ indefinites a kind of choice function indefinite.

• Support for this approach comes from the availability of ‘one’ in anaphoric definites.
• We develop an analysis based on the Jenks 2018 analysis of Mandarin bare definites, with a new approach to the numeral ‘one,’ which makes ‘one’ indefinites a kind of choice function indefinite.

• Support for this approach comes from the availability of ‘one’ in anaphoric definites.
§1 Background on Burmese
§2 The expression of (in)definiteness
§3 Indefinites in object position
§4 Analysis
§5 More on ‘one’
§1 Background on Burmese
Burmese is a head-final language with default SOV word order and nominative-accusative case alignment:

(1) **Canonical SOV order:**

```
thanmata %(ka) Maunmaun (ko) p’eq-k’éh-teh.
President NOM Maunmaun ACC invite-PST-NFUT
```

‘The president invited Maunmaun.’

- Nominative case marker *ka*
- Accusative case marker *ko*
- Case markers (especially accusative *ko*) may be dropped
(2) **OSV order via scrambling:**

Maunmaun *(ko)* thanmata *(ka)* ___ p’eiq-k’éh-teh.
Maunmaun ACC president NOM invite-PST-NFUT

‘The president invited Maunmaun.’

- Scrambling affects the ability to case-drop.

See also Jenny and Hnin Tun 2013 on case-marking in Burmese.
(3) **Burmese nominal schema, based on Simpson 2005:**
(Dem) (RC) N (Adj) (Num CL)
See also Soe 1999 ch. 3 for more detailed discussion.

There are also postnominal plural markers:

(4) **Mui-dwe ka Maunmaun ko kaiq-k’éh-teh.**
snake-PL NOM Maunmaun ACC bite-PAST-NFUT
‘The snakes bit Maunmaun.’ # if 1 snake

But today we’ll concentrate on singular referents.
Nominals

(3) **Burmese nominal schema, based on Simpson 2005:**
(Dem) (RC) N (Adj) (Num CL)

See also Soe 1999 ch. 3 for more detailed discussion.

There are also postnominal plural markers:

(4) **Mui-dwe ka Maunmaun ko kaiq-k’éh-teh.**
snake-PL NOM Maunmaun ACC bite-PAST-NFUT

‘The snakes bit Maunmaun.’ # if 1 snake

But today we’ll concentrate on singular referents.
§2 The expression of (in)definiteness
Definiteness across languages

Dryer (2013; *WALS*) highlights four crosslinguistically common strategies for expressing (in)definiteness:

1. an indefinite word distinct from the numeral ‘one’
2. the numeral ‘one’ to mark indefiniteness
3. an indefinite affix to mark indefiniteness
4. a definite article

Languages employ different strategies and make different cuts. For example, English only distinguishes between definites and indefinites, using the articles *the* and *a*.
Dryer (2013; *WALS*) highlights four crosslinguistically common strategies for expressing (in)definiteness:

1. an indefinite word distinct from the numeral ‘one’
2. the numeral ‘one’ to mark indefiniteness
3. an indefinite affix to mark indefiniteness
4. a definite article

Languages employ different strategies and make different cuts. For example, English only distinguishes between definites and indefinites, using the articles *the* and *a*.
Types of indefinites

(5) **Nonspecific indefinite:**
A dog is scratching the door, but I don’t know which dog.

(6) **Specific indefinite:**
A dog is scratching the door, and I know which dog it is.
(5) **Nonspecific indefinite:**
A dog is scratching the door, but I don’t know which dog.

(6) **Specific indefinite:**
A dog is scratching the door, and I know which dog it is.
Types of definites

(7) **Unique definites:**

a. *The* teacher is scolding Maunmaun
 (*uttered in a class with one teacher*)

b. *The* president is talking to Maunmaun
 (*uttered in Myanmar*)

(8) **Anaphoric definite:**

Sansan was looking at a dog and a cat. She is buying *the* cat.

Various languages morphologically distinguish unique and anaphoric definites (Schwarz 2013).
Types of definites

(7) **Unique definites:**
 a. The teacher is scolding Maunmaun
 (uttered in a class with one teacher)
 b. The president is talking to Maunmaun
 (uttered in Myanmar)

(8) **Anaphoric definite:**
 Sansan was looking at a dog and a cat. She is buying the cat.

Various languages morphologically distinguish unique and anaphoric definites (Schwarz 2013).
Types of definites

(7) **Unique definites:**

a. **The** teacher is scolding Maunmaun
 (uttered in a class with one teacher)

b. **The** president is talking to Maunmaun
 (uttered in Myanmar)

(8) **Anaphoric definite:**

Sansan was looking at a dog and a cat. She is buying **the** cat.

Various languages morphologically distinguish unique and anaphoric definites (Schwarz 2013).
As an article-less language, Burmese uses the numeral ‘one’ and demonstratives to express (in)definiteness distinctions:

- Singular indefinites use the numeral ‘one’ (cf Givón 1981)
- Unique definites must be bare
- Anaphoric definites take the demonstrative *ehdi* or are bare

However, this pattern does not extend to object position for all speakers! In this section, we consider data from subject position, where judgments are uniform.
As an article-less language, Burmese uses the numeral ‘one’ and demonstratives to express (in)definiteness distinctions:

- Singular indefinites use the numeral ‘one’ (cf Givón 1981)
- Unique definites must be bare
- Anaphoric definites take the demonstrative *ehdi* or are bare

However, this pattern does not extend to object position for all speakers! In this section, we consider data from subject position, where judgments are uniform.
As an article-less language, Burmese uses the numeral ‘one’ and demonstratives to express (in)definiteness distinctions:

- Singular indefinites use the numeral ‘one’ (cf Givón 1981)
- Unique definites must be bare
- Anaphoric definites take the demonstrative *ehdi* or are bare

However, this pattern does not extend to object position for all speakers! In this section, we consider data from subject position, where judgments are uniform.
Indefinites require the numeral ‘one’ with classifier. There is no distinction between specific and nonspecific indefinites.

(9) **Nonspecific indefinite:**

You work at a doggy daycare. There are multiple dogs outside and you and Hlahla are in the back room. You hear a dog scratching on the door, but don’t know which dog it is. You tell Hlahla:

*Kwi *(tiq kaun) kal tank’à ko c’iq-ne-teh
dog one CL.animal NOM door ACC scratch-PROG-NFUT
‘A dog is scratching the door.’
Indefinites require the numeral ‘one’ with classifier. There is no distinction between specific and nonspecific indefinites.

(10) **Specific indefinite:**

You work in a doggy day care. There are multiple dogs in the room with you and you are on the phone with Hlahla. You see one of the dogs scratching on the door. Hlahla asks you what that noise is. You tell her:

Kwi *(tiq kaun) ka tank’à ko c’iq-ne-teh
dog one CL.animal NOM door ACC scratch-PROG-NFUT
‘A dog is scratching the door.’
Unique definite must be bare, without a demonstrative or numeral:

(11) **Immediate situation definite:**

You and Maunmaun are at Hlahla’s house. She has one dog, who is playing with Maunmaun. Neither of you can see them right now. You tell Hlahla:

(*Ehdi) **kwi** (*tiq kaun) **ka** MM ko cait-ne-teh.

DEM dog one CL.animal NOM MM ACC like-PROG-NFUT

‘The dog likes Maunmaun.’
Anaphoric definites can be expressed bare, or with the medial demonstrative *ehdi*:

(12) **Anaphoric definite:**

You go to an adoption drive with MM. There’s an open area for the animals to hang out and people to mingle about. Up for adoption are a few dogs and cats. When MM causes trouble, you tell an organiser:

\[
\text{[MM ka } \text{kwi tiq kaun néh caun tiq kaun ko MM nom dog one cl.animal conj cat one cl.animal acc hnaqshaq-ne-teh.]} \quad \text{(Ehdi) kwi ka MM ko laiq-ne-teh. bother-prog-nfut dem dog nom MM acc chase-prog-nfut}
\]

‘[MM was bothering a dog and a cat.] The dog is chasing MM.’
Burmes uses the presence or absence of demonstratives and the numeral ‘one’ to encode singular definites and indefinites, and also distinguishes unique vs anaphoric definites:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>*</td>
<td>OK</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>*</td>
<td>OK</td>
</tr>
</tbody>
</table>

• This pattern holds for all four speakers for subject position.
• For one speaker, this pattern also extends to object position, but for our three other speakers, object position behaves differently.
Burmese uses the presence or absence of demonstratives and the numeral ‘one’ to encode singular definites and indefinites, and also distinguishes unique vs anaphoric definites:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>*</td>
<td>OK</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>*</td>
<td>OK</td>
</tr>
</tbody>
</table>

- This pattern holds for all four speakers for subject position.
- For one speaker, this pattern also extends to object position, but for our three other speakers, object position behaves differently.
Burmese uses the presence or absence of demonstratives and the numeral ‘one’ to encode singular definites and indefinites, and also distinguishes unique vs anaphoric definites:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>*</td>
<td>OK</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>*</td>
<td>OK</td>
</tr>
</tbody>
</table>

• This pattern holds for all four speakers for subject position.
• For one speaker, this pattern also extends to object position, but for our three other speakers, object position behaves differently.
§3 Indefinites in object position
For three speakers, **indefinites in object position can be bare.**

(13) Sansàn ka [youn %*(tiq kaun) ko] weh-ne-teh.
 Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT
 ‘Sansan is buying a rabbit.’

▶ In this section, we set aside judgments from our one speaker who consistently rejects bare noun indefinites.

We do not reproduce contexts for subsequent examples here. All examples were evaluated/elicited in contexts which ensure the intended (in)definiteness and scope.
Indefinites in object position

For three speakers, **indefinites in object position can be bare.**

(13) Sànsàn ka [youn %(**tiq kaun**) ko] weh-ne-teh. Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT
 ‘Sansan is buying a rabbit.’

▶ In this section, we set aside judgments from our one speaker who consistently rejects bare noun indefinites.

We do not reproduce contexts for subsequent examples here. All examples were evaluated/elicited in contexts which ensure the intended (in)definiteness and scope.
Indefinites in object position

For three speakers, **indefinites in object position can be bare.**

(13) Sansàn ka [youn %**(tiq kaun)** ko] weh-ne-teh.
Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT
‘Sansan is buying a rabbit.’

► In this section, we set aside judgments from our one speaker who consistently rejects bare noun indefinites.

We do not reproduce contexts for subsequent examples here. All examples were evaluated/elicited in contexts which ensure the intended (in)definiteness and scope.
Burmese thus has **two types of indefinites** in object position:

(14) **‘One’-indefinite:**

```
Sansan ka [youn tiq kaun (ko)] weh-ne-teh.
```

Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT

‘Sansan is buying a rabbit.’

(15) **Bare noun indefinite:**

```
Sansan ka [youn (%ko)] weh-ne-teh.
```

Sansan NOM rabbit ACC buy-PROG-NFUT

‘Sansan is buying a rabbit.’

(‘...the rabbit’ possible for all speakers, with optional ko)
Burmese thus has **two types of indefinites** in object position:

(14) ‘One’-indefinite:

Sansàn ka [youn **tiq** kaun (ko)] weh-ne-teh.
Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT
‘Sansan is buying a rabbit.’

(15) **Bare noun indefinite:**

Sansàn ka [youn (%ko)] weh-ne-teh.
Sansan NOM rabbit ACC buy-PROG-NFUT
‘Sansan is buying a rabbit.’

(‘...the rabbit’ possible for all speakers, with optional ko)
Burmese thus has **two types of indefinites** in object position:

(14) **‘One’-indefinite:**

Sansàn ka [youn *tiq kaun* (ko)] weh-ne-teh.
Sansan NOM rabbit one CL.animal ACC buy-PROG-NFUT
‘Sansan is buying a rabbit.’

(15) **Bare noun indefinite:**

Sansàn ka [youn (%ko)] weh-ne-teh.
Sansan NOM rabbit ACC buy-PROG-NFUT
‘Sansan is buying a rabbit.’

(‘...the rabbit’ possible for all speakers, with optional *ko*)
Bare noun indefinites cannot be scrambled while retaining an indefinite interpretation.

(16) **Bare noun indefinite cannot be scrambled:**

[Caun] Sànsàn ka ___ zhywei-ne-teh.
cat Sansan NOM pick-PROG-NFUT

* ‘Sansan is picking a cat.’
✓ ‘Sansan is picking the cat.’
Bare noun indefinites

One speaker sometimes disallows adjectival modification:

(17) **Some variation in the acceptability of modifiers:**

a. Sànsàn ka [caun **apyu**] zhywei-ne-geh
 Sansan NOM cat white pick-PROG-NFUT
 %? ‘Sansan is picking a white cat.’
 ✓ ‘Sansan is picking the white cat.’

b. Maunmaun ka [c’**eh** ànceh] weh-ne-geh
 Maunmaun NOM cotton shirt buy-PROG-NFUT
 %? ‘Maunmaun is buying a cotton shirt.’
 ✓ ‘Maunmaun is buying the cotton shirt.’
Bare noun indefinites

Bare noun indefinites are compatible with other tense/aspect as well:

(18) **Bare noun indefinite with past perfective:**

Maunmaun ka p’à sha-dui-laiq-teh.
Maunmaun NOM frog search-find-ASP-NFUT

✓ ‘Maunmaun found a frog.’
✓ ‘Maunmaun found the frog.’

(19) **Bare noun indefinite with future:**

Maunmaun ka youn weh-ma-louq.
Maunmaun NOM rabbit buy-TAM

✓ ‘Maunmaun is buying a rabbit.’
✓ ‘Maunmaun is buying the rabbit.’
Interim summary

(For these speakers,) bare noun objects can be definite or indefinite.

Bare noun indefinites...

- disprefer the accusative case (consistently for one speaker, inconsistently for another);
- cannot be scrambled away from the verb;
- allow modification (most of the time);
- are compatible with all tense/aspects tested.

► We analyze bare noun indefinites as having undergone (Pseudo) Noun Incorporation (PNI) (Massam 2001, a.o.).
(For these speakers,) bare noun objects can be definite or indefinite.

Bare noun indefinites...

- disprefer the accusative case (consistently for one speaker, inconsistently for another);
- cannot be scrambled away from the verb;
- allow modification (most of the time);
- are compatible with all tense/aspects tested.

We analyze bare noun indefinites as having undergone (Pseudo) Noun Incorporation (PNI) (Massam 2001, a.o.).
(For these speakers,) bare noun objects can be definite or indefinite.

Bare noun indefinites...

- disprefer the accusative case (consistently for one speaker, inconsistently for another);
- cannot be scrambled away from the verb;
- allow modification (most of the time);
- are compatible with all tense/aspects tested.

 ► We analyze bare noun indefinites as having undergone (Pseudo) Noun Incorporation (PNI) (Massam 2001, a.o.).
Incorporated nominals are known to take strict narrow scope in many languages (see e.g. Baker 1996, Massam 2001, Chung and Ladusaw 2004).

- ‘One’-indefinites allow wide (and narrow) scope readings. Bare noun indefinites only allow narrow scope readings.
Incorporated nominals are known to take strict narrow scope in many languages (see e.g. Baker 1996, Massam 2001, Chung and Ladusaw 2004).

- ‘One’-indefinites allow wide (and narrow) scope readings.
 Bare noun indefinites only allow narrow scope readings.
(20) **Under negation:**

a. Sànsàn ka **youn tiq kaun** (ko) **ma-weh-k’éh-bù.**
Sansan NOM rabbit one CL.animal ACC NEG-buy-PAST-NEG
× ‘Sansan didn’t get any rabbits.’
✓ ‘SS didn’t get one rabbit.’ (but got another)

b. Sànsàn ka **youn** (ko) **ma-weh-k’éh-bù.**
Sansan NOM rabbit ACC NEG-buy-PAST-NEG
✓ ‘Sansan didn’t get any rabbits.’
× ‘SS didn’t get one rabbit.’ (but got another)
The scope of indefinites

(21) Under modal verb ‘want’:

a. Sànsàn dhuht’è tiq yauq laq’t’aq-cin-teh
Sansan rich.man one cl.person marry-want-NFUT
✓ ‘Sansan wants to marry a/any rich man.’ want > Ǝ
✓ ‘Sansan wants to marry a specific rich man.’ Ǝ > want

b. Sànsàn dhuht’è laq’t’aq-cin-teh
Sansan rich.man marry-want-NFUT
✓ ‘Sansan wants to marry a/any rich man.’ want > Ǝ
× ‘Sansan wants to marry a specific rich man.’ Ǝ > want
The scope of indefinites

(22) In conditional clause:

a. Nga ulè tiq yauq dhe-yin, nga c’an-dha-meh.
\[1SG\] uncle one <human kill-if \[1SG\] rich-ASP-FUT
✓ ‘If I kill an/any uncle, I will be rich.’ \[if > \exists\]
✓ ‘If I kill a specific uncle, I will be rich.’ \[\exists > if\]

b. Nga ulè dhe-yin, nga c’an-dha-meh.
\[1SG\] uncle kill-if \[1SG\] rich-ASP-FUT
✓ ‘If I kill an/any uncle, I will be rich.’ \[if > \exists\]
× ‘If I kill a specific uncle, I will be rich.’ \[\exists > if\]
Summary: The scope of indefinites

For speakers with bare noun indefinites, in object position:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>NEG > Ǝ</td>
<td>Ǝ > NEG</td>
</tr>
<tr>
<td>‘want’</td>
<td>want > Ǝ</td>
<td>Ǝ > want, want > Ǝ</td>
</tr>
<tr>
<td>conditional</td>
<td>if > Ǝ</td>
<td>Ǝ > if, if > Ǝ</td>
</tr>
</tbody>
</table>

Burmese also has NPIs (*wh-hma*; see Erlewine and New 2019), which allows for the expression of “NEG > Ǝ” even for speakers without bare noun indefinites.
§4 Analysis
Goals

We develop an analysis for the interpretation of nominals in Burmese, which accounts for these features:

- Bare nouns always can be definite.
- Anaphoric definites allow for demonstratives.
- Nouns with ‘one’ are indefinite.
- Bare noun objects can be narrow-scope indefinites (for some speakers).
Approach

Setting aside bare noun indefinites for the moment...

- All NPs without quantifiers are **definite descriptions** via \(\iota \) type-shifting (Chierchia 1998), *including* ‘one’-indefinites.
 - We follow the approach of Jenks 2018 for distinguishing anaphoric and unique definites.

- The numeral ‘one’ introduces a choice function, which is then bound, making ‘one’-indefinites functionally indefinite but syntactically akin to definites.

- A **Non-Vacuity constraint** on the adjunction of ‘one’ will yield anti-uniqueness effects (§5).
Setting aside bare noun indefinites for the moment...

- All NPs without quantifiers are **definite descriptions** via ι type-shifting (Chierchia 1998), *including* ‘one’-indefinites.
 - We follow the approach of Jenks 2018 for distinguishing anaphoric and unique definites.
- **The numeral ‘one’ introduces a choice function**, which is then bound, making ‘one’-indefinites functionally indefinite but syntactically akin to definites.
- A **Non-Vacuity constraint** on the adjunction of ‘one’ will yield anti-uniqueness effects (§5).
Approach

Setting aside bare noun indefinites for the moment...

• All NPs without quantifiers are **definite descriptions** via ι type-shifting (Chierchia 1998), *including* ‘one’-indefinites.
 • We follow the approach of Jenks 2018 for distinguishing anaphoric and unique definites.

• The numeral ‘one’ introduces a choice function, which is then bound, making ‘one’-indefinites functionally indefinite but syntactically akin to definites.

• A **Non-Vacuity constraint** on the adjunction of ‘one’ will yield anti-uniqueness effects (§5).
Mandarin is another article-less language with bare noun definites (see e.g. Cheng and Sybesma 1999).

(23) **Yueliang** sheng shang lai-le.
 moon rise up come-PFV
 ‘The moon has risen.’
 (Chen 2004: 1165)

For non-subjects, anaphoric definites require demonstratives:

(24) [There is a boy and a girl in the classroom.]
 Wo zuotian yudao #(na ge) nansheng.
 1sg yesterday meet that CL boy
 ‘I met the boy yesterday.’
 (Jenks 2018: 510)
Mandarin is another article-less language with bare noun definites (see e.g. Cheng and Sybesma 1999).

(23) **Yueliang** sheng shang lai-le.
moon rise up come-PFV
‘The moon has risen.’ (Chen 2004: 1165)

For non-subjects, anaphoric definites require demonstratives:

(24) [There is a boy and a girl in the classroom.]
Wo zuotian yudao #(*na ge) nansheng.
1sg yesterday meet that CL boy
‘I met the boy yesterday.’ (Jenks 2018: 510)
Following Chierchia 1998, bare nouns may undergo type-shifting by \(\iota \) (25), i.e. Schwarz’s (2009) weak definite determiner:

\[
(25) \quad \llbracket \iota \rrbracket = \lambda s_r . \lambda P_{\langle e, \langle s, t \rangle \rangle} : \exists ! x [P(x)(s_r)] \cdot \iota x [P(x)(s_r)]
\]

where \(s_r \) is the “resource situation,” providing a contextual restriction.

Nominal predicates hold in a \textit{situation} (a sub-part of a world, or a world; type \(s \); see e.g. Kratzer 1989):

\[
(26) \quad \llbracket kwi \text{ ‘dog’} \rrbracket = \lambda x . \lambda s . x \text{ is a dog in } s
\]
Following Chierchia 1998, bare nouns may undergo type-shifting by ι (25), i.e. Schwarz’s (2009) weak definite determiner:

\[
(25) \quad \llbracket \iota \rrbracket = \lambda s_r . \lambda P_{e,\langle s, t \rangle} : \exists ! x[P(x)(s_r)] . \iota x[P(x)(s_r)]
\]

where s_r is the “resource situation,” providing a contextual restriction.

Nominal predicates hold in a *situation* (a sub-part of a world, or a world; type s; see e.g. Kratzer 1989):

\[
(26) \quad \llbracket kwi \text{ ‘dog’} \rrbracket = \lambda x . \lambda s . x \text{ is a dog in } s
\]
You and Maunmaun are at Hlahla’s house. She has one dog...

\[
[[[\ell \ s_r \ kwi]]] = \ell x[x \text{ is a dog in } s_r] = \text{the unique dog in } s_r
\]

presup: there is a unique dog in \(s_r\) ✓

We treat the resource situation \(s_r\) as free and pragmatically determined.
Burmese bare noun definite

Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

\[[[\ell \, s_r \, kwi]] \equiv \ell x[x \text{ is a dog in } s_r] = \text{the unique dog in } s_r\]

presup: there is a unique dog in \(s_r\) ✓

We treat the resource situation \(s_r\) as free and pragmatically determined.
Context for immediate situation definite (11): *You and Maunmaun are at Hlahla’s house. She has one dog*...

\[
\text{NP} \\
\lambda x[x \text{ is a dog in } s_r] = \text{the unique dog in } s_r \\
\text{presup: there is a unique dog in } s_r \checkmark
\]

We treat the resource situation \(s_r\) as free and pragmatically determined.
Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

\[
\begin{array}{c}
\text{NP} \\
\text{NP} \\
\text{NP} \\
\text{NP}
\end{array}
\]

\[
\begin{array}{c}
\ell \\
s_r \\
kwi 'dog'
\end{array}
\]

\[[[[\ell \ s_r] \ kwi]] = \forall x [x \text{ is a dog in } s_r] = \text{the unique dog in } s_r
\]

presup: there is a unique dog in \(s_r\) ✓

We treat the resource situation \(s_r\) as free and pragmatically determined.
Schwarz and Jenks on articulated definiteness

Anaphoric (strong) definites have a different denotation:

\[(27) \quad \lbrack \ell^x \rbrack = \lambda y \cdot \lambda P_{\langle e, \langle s, t \rangle \rangle} : \exists! x[P(x)(w) \land x = y] \cdot \ell x[P(x)(w) \land x = y]\]

\(\ell^x\) takes an index argument \(y\), instead of a resource situation\(^1\), and returns that individual, presupposing that \(y\) satisfies \(P\) in \(w\).

\(^1\)This follows a suggestion by Angelika Kratzer p.c. to Schwarz (2009: p. 264 fn. 16), and will turn out to be important. \(\ell^x\) is Jenks’s term.
Anaphoric (strong) definites have a different denotation:

\[
\llbracket \iota^x \rrbracket = \lambda y \cdot \lambda P_{\langle e, \langle s, t \rangle \rangle} \\
\quad : \exists! x [P(x)(w) \land x = y] \cdot \iota x[P(x)(w) \land x = y]
\]

\(\iota^x\) takes an **index argument** \(y\), instead of a resource situation\(^1\), and returns that individual, presupposing that \(y\) satisfies \(P\) in \(w\).

\(^1\)This follows a suggestion by Angelika Kratzer p.c. to Schwarz (2009: p. 264 fn. 16), and will turn out to be important. \(\iota^x\) is Jenks’s term.
For Mandarin, Jenks proposes that demonstratives have the denotation ι^x, but the type-shifter for bare nouns is always ι, not ι^x.

We adopt this for Burmese.
Context for anaphoric definite in (12): *At an adoption drive with MM... you tell an organizer:* “MM was bothering a dog\textsubscript{3} and a cat\textsubscript{4}.”

\[
[[[ehdi 3 \textit{kwi}]]] = \nu x [x \text{ is a dog in } w \land x = g(3)] = g(3)
\]

presup: there is a unique [dog in \(w\) that is \(g(3)\)], i.e. \(g(3)\) is a dog \(\checkmark\)
Context for anaphoric definite in (12): *At an adoption drive with MM... you tell an organizer: “MM was bothering a dog₃ and a cat₄.”*

\[
\begin{array}{c}
\text{DP} \\
\text{D} \text{ 3} \\
\text{ν}^x \\
\text{ehdi} \\
\text{NP} \\
\text{kwï ‘dog’}
\end{array}
\]

\[
\llbracket \text{[ehdi 3 kwï]} \rrbracket = \nu^x [x \text{ is a dog in } w \land x = g(3)] = g(3)
\]

presup: there is a unique [dog in \(w\) that is \(g(3)\)], i.e. \(g(3)\) is a dog ✔
Context for anaphoric definite in (12): *At an adoption drive with MM... you tell an organizer: “MM was bothering a dog₃ and a cat₄.”*

\[
\text{DP} \quad \text{DP}\text{3}\quad \text{NP} \\
\text{D} \quad \text{3} \quad \text{NP} \\
\text{\(\nu^x\)}\quad \text{3} \quad \text{NP} \\
\text{ehdi} \quad \text{3} \quad \text{NP} \\
\text{kwi ‘dog’} \\
\]

[[[ehdi 3] kwi]] = \(\nu^x [x \text{ is a dog in } w \land x = g(3)] = g(3)\)

presup: there is a unique [dog in w that is g(3)], i.e. g(3) is a dog \(\checkmark\)
Context for anaphoric definite in (12): *At an adoption drive with MM... you tell an organizer: “MM was bothering a dog₃ and a cat₄.”*

\[
\text{DP} \\
D \ 3 \\
\nu^x \\
| \\
ehdi \\
\text{NP} \\
kwi \text{ ‘dog’}
\]

\[
\llbracket[ehdi \ 3 \ kwi]\rrbracket = \nu x[x \text{ is a dog in } w \land x = g(3)] = g(3)
\]

presup: there is a unique [dog in w that is g(3)], i.e. g(3) is a dog ✓
Note that we expect a bare noun (weak/ι) definite will often be felicitous in a context that supports an anaphoric definite.

For Mandarin non-subjects, demonstratives are indeed required for anaphoric definites. Jenks proposes a principle *Index!*, for indices to be represented syntactically when possible:

“Because ι^x^ includes an index that is absent in ι, ι^x^ will be preferred whenever it is available.”

(Jenks 2018: 524)
Note that we expect a bare noun (weak/ι) definite will often be felicitous in a context that supports an anaphoric definite.

For Mandarin non-subjects, demonstratives are indeed required for anaphoric definites. Jenks proposes a principle Index!, for indices to be represented syntactically when possible:

“Because ι^x includes an index that is absent in ι, ι^x will be preferred whenever it is available.” (Jenks 2018: 524)
But recall that the demonstrative is *optional* for Burmese anaphoric definites. We have two options:

1. Propose that Index! does not hold in Burmese.
2. Propose a null variant of *ehdi* ν^x in Burmese.

We will not distinguish between these two views today.
But recall that the demonstrative is *optional* for Burmese anaphoric definites. We have two options:

1. Propose that Index! does not hold in Burmese.
2. Propose a null variant of *ehdi x* in Burmese.

We will not distinguish between these two views today.
✓ Bare nouns always can be definite.
✓ Anaphoric definites allow for demonstratives.
 • Nouns with ‘one’ are indefinite.
 • Bare noun objects can be narrow-scope indefinites (for some speakers), with different scope-taking from ‘one’-indefinites.
We propose that ‘one’ is a modifier that restricts the nominal domain to a singleton, using a choice function:

\[\text{[[tiqf CL]]} \quad \text{(type } \langle \langle e, \langle s, t \rangle \rangle, \langle e, \langle s, t \rangle \rangle \rangle) \]
\[= \lambda P_{\langle e, \langle s, t \rangle \rangle} . \lambda x . \lambda s_r . x = f_{cf} (\lambda y . P(y)(s_r) \land \text{ATOM}_{CL}(y)) \]

Here, \(f \) is a choice function variable (type \(\langle \langle e, t \rangle, e \rangle \)).

\[^2[\text{CL}] = \lambda P_{\langle e, \langle s, t \rangle \rangle} . \lambda x . \lambda s_r . P(x)(s_r) \land \text{ATOM}_{CL}(x) \]
\[\left[\text{tiqf ‘one’} \right] = \lambda CL_{\langle \langle e, \langle s, t \rangle \rangle, \langle e, \langle s, t \rangle \rangle \rangle} . \lambda P_{\langle e, \langle s, t \rangle \rangle} . \lambda x . \lambda s_r . x = f_{cf} (\lambda y . CL(P)(y)(s_r)) \]
We propose that ‘one’ is a modifier that restricts the nominal domain to a singleton, using a choice function:

\[
\begin{align*}
(28) & \qquad [[\text{ti}_f \text{ CL}]] \quad \text{(type } \langle\langle e, \langle s, t \rangle \rangle, \langle e, \langle s, t \rangle \rangle\rangle) \\
& \quad = \lambda P_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda x \cdot \lambda s_r \cdot x = f_{\text{cf}}(\lambda y \cdot P(y)(s_r) \land \text{ATOM}_{\text{CL}}(y))
\end{align*}
\]

Here, \(f \) is a choice function variable (type \(\langle\langle e, t \rangle, e \rangle \)).
We propose that ‘one’ is a modifier that restricts the nominal domain to a singleton, using a choice function:

\[
\begin{align*}
\llbracket \text{tiq}_f \text{ CL} \rrbracket = & \quad \lambda P_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda x \cdot \lambda s_r . \ x = f_{cf} (\lambda y . \ P(y)(s_r) \land \text{ATOM}_{\text{CL}}(y)) \\
\llbracket \text{tiq}_f \text{ ‘one’} \rrbracket = & \quad \lambda CL_{\langle e, \langle s, t \rangle, \langle e, \langle s, t \rangle \rangle \rangle} \cdot \lambda P_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda x \cdot \lambda s_r . \ x = f_{cf} (\lambda y . \ CL(P(y))(s_r))
\end{align*}
\]

Here, \(f \) is a choice function variable (type \(\langle \langle e, t \rangle, e \rangle \)).
‘One’-indefinites

Like any bare noun, it undergoes the ι type-shift:

\[
\begin{array}{c}
\text{NP} \\
\iota \\ s_r \\
\text{NP} \\
\text{NP} \\
\text{NP} \\
k\text{\textit{wi ‘dog’}} \\
ti\text{q} \\
\text{CL}_{\text{anim}} \\
\text{kaun}
\end{array}
\]

(29) \[[[\iota s_r] [k\text{\textit{wi [tiq}}_f \text{kaun}]]) = f(\lambda y . \ y \text{is an atomic dog in } s_r) \]

presup: there is a unique x which is equal to what f returns when given the set of atomic dogs in s_r (always true)
‘One’-indefinites

Like any bare noun, it undergoes the ι type-shift:

$$\begin{align*}
\text{NP} & \\
\iota & s_r \\
\text{NP} & \\
\text{NP} & \\
\text{NP} & \\
\text{kwi} & \text{‘dog’} & \text{‘one’}_f & \text{CL}_{\text{anim}} \\
\text{tiq} & & \text{kaun} \\
\end{align*}$$

(29) $\left[\left[[\iota s_r] [\text{kwi } \text{tiq}_f \text{ kaun}]] \right] \right] = f(\lambda y. y \text{ is an atomic dog in } s_r)$

presup: there is a unique x which is equal to what f returns when given the set of atomic dogs in s_r (always true)
‘One’-indefinites

(29) is formally a definite description, but its referent will depend on the choice function \(f \).

- We then adjoin a choice function binder \(\exists f_{cf} \) higher in the tree. This gives us a choice function indefinite out of a bare definite description.
(29) is formally a definite description, but its referent will depend on the choice function \(f \).

- We then adjoin a choice function binder \(\exists f_{cf} \) higher in the tree. This gives us a choice function indefinite out of a bare definite description.
Context for nonspecific indefinite (9): *There are multiple dogs outside... You hear a dog scratching on the door, but don’t know which dog it is.*

Let $Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \}$.

$f_{cf}(Y) = \text{Bev} \quad \quad \quad g_{cf}(Y) = \text{Stan} \quad \quad \quad h_{cf}(Y) = \text{Spot}$

(9') LF: $\exists f_{cf} \ [\ [\NP [\iota \ s_r] \ [\text{dog} \ [\text{one}_f \ \text{CL}]]] \text{ is scratching the door in } w]$

$= \exists f_{cf} \ [\ f (\lambda y . \ y \text{ atomic dog in } s_r) \text{ is scratching the door in } w]$

~ 1 iff Bev or Stan or Spot is scratching the door in w

This also applies to specific indefinites. We discuss the position of $\exists f_{cf}$ later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
‘One’-indeﬁnites

Context for nonspeciﬁc indeﬁnite (9): There are multiple dogs outside...
You hear a dog scratching on the door, but don’t know which dog it is.

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \} \).

\(f_{cf}(Y) = \text{Bev} \quad g_{cf}(Y) = \text{Stan} \quad h_{cf}(Y) = \text{Spot} \)

(9’) \hfill \text{LF: } \exists f_{cf} [\left[\text{NP } [\iota s_r] \text{ dog } [\text{one}_f \text{ CL}]] \right] \text{ is scratching the door in } w \]
\hfill = \exists f_{cf} [f(\lambda y . y \text{ atomic dog in } s_r) \text{ is scratching the door in } w]
\hfill \sim \ 1 \text{ iff Bev or Stan or Spot is scratching the door in } w

This also applies to speciﬁc indeﬁnites. We discuss the position of \(\exists f_{cf} \) later in this section, and discuss the unavailability of ‘one’ for deﬁnites in section 5.
‘One’-indefinites

Context for nonspecific indefinite (9): There are multiple dogs outside...
You hear a dog scratching on the door, but don’t know which dog it is.

Let $Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \}$.

$$f_{cf}(Y) = \text{Bev} \quad g_{cf}(Y) = \text{Stan} \quad h_{cf}(Y) = \text{Spot}$$

(9') \text{ LF: } \exists f_{cf} [\lfloor \text{NP } \iota s_r [\text{dog } [\text{one}_f \text{ CL}]] \rfloor \text{ is scratching the door in } w] = \exists f_{cf} [f(\lambda y. y \text{ atomic dog in } s_r) \text{ is scratching the door in } w] \sim 1 \text{ iff Bev or Stan or Spot is scratching the door in } w$

This also applies to specific indefinites. We discuss the position of $\exists f_{cf}$ later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
‘One’-indefinites

Context for nonspecific indefinite (9): *There are multiple dogs outside... You hear a dog scratching on the door, but don’t know which dog it is.*

Let $Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \}$.

$$f_{cf}(Y) = \text{Bev} \quad g_{cf}(Y) = \text{Stan} \quad h_{cf}(Y) = \text{Spot}$$

(9') \[\text{LF: } \exists f_{cf} [[\text{NP } [\iota s_r] [\text{dog [one}_{cf} \text{ CL}]]] \text{ is scratching the door in } w] \]
\[= \exists f_{cf} [f(\lambda y . y \text{ atomic dog in } s_r) \text{ is scratching the door in } w] \]
\[\sim 1 \text{ iff Bev or Stan or Spot is scratching the door in } w \]

This also applies to specific indefinites. We discuss the position of $\exists f_{cf}$ later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
‘One’-indefinites

Context for nonspecific indefinite (9): There are multiple dogs outside...
You hear a dog scratching on the door, but don’t know which dog it is.

Let $Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \}$.

$$f_{cf}(Y) = \text{Bev} \quad g_{cf}(Y) = \text{Stan} \quad h_{cf}(Y) = \text{Spot}$$

(9’) LF: $\exists f_{cf} \left[\left[\text{NP } \iota \ s_r \right] \left[\text{dog } \left[\text{one_f cl} \right] \right] \right]$ is scratching the door in ω

~ 1 iff Bev or Stan or Spot is scratching the door in ω

This also applies to specific indefinites. We discuss the position of $\exists f_{cf}$ later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
‘One’-indefinites

Context for nonspecific indefinite (9): There are multiple dogs outside...
You hear a dog scratching on the door, but don’t know which dog it is.

Let $Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \}$.

$$f_{cf}(Y) = \text{Bev} \quad g_{cf}(Y) = \text{Stan} \quad h_{cf}(Y) = \text{Spot}$$

(9’) LF: $\exists f_{cf} [[NP [\iota s_r] [\text{dog [one} f_{cf} \text{]CL}]] \text{ is scratching the door in } w]$
= $\exists f_{cf} [f(\lambda y \cdot y \text{ atomic dog in } s_r) \text{ is scratching the door in } w]$
$\leadsto 1 \text{ iff Bev or Stan or Spot is scratching the door in } w$

This also applies to specific indefinites. We discuss the position of $\exists f_{cf}$ later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
‘One’-indefinites

Context for nonspecific indefinite (9): *There are multiple dogs outside... You hear a dog scratching on the door, but don’t know which dog it is.*

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Bev, Stan, Spot} \} \)

\[
\begin{align*}
 f_{cf}(Y) &= \text{Bev} \\
 g_{cf}(Y) &= \text{Stan} \\
 h_{cf}(Y) &= \text{Spot}
\end{align*}
\]

(9’) \[\text{LF: } \exists f_{cf} [[\text{NP } [\iota s_r] [\text{dog } [\text{one}_f \text{ cl}]]] \text{ is scratching the door in } w] = \exists f_{cf} [f(\lambda y. y \text{ atomic dog in } s_r) \text{ is scratching the door in } w] \sim 1 \text{ iff Bev or Stan or Spot is scratching the door in } w \]

This also applies to specific indefinites. We discuss the position of \(\exists f_{cf} \) later in this section, and discuss the unavailability of ‘one’ for definites in section 5.
Recall that bare noun indefinites are NPs without ‘one’ in object position with indefinite interpretation.

- Subject to speaker variation.
- Accusative case and modification sometimes dispreferred.
- Must stay VP-internal (cannot be scrambled).
- Take consistently narrow scope.

- Bare noun indefinites undergo (Pseudo) Noun Incorporation.
Bare noun indefinites

Recall that bare noun indefinites are NPs without ‘one’ in object position with indefinite interpretation.

- Subject to speaker variation.
- Accusative case and modification sometimes dispreferred.
- Must stay VP-internal (cannot be scrambled).
- Take consistently narrow scope.

Bare noun indefinites undergo (Pseudo) Noun Incorporation.
Bare noun indefinites

Recall that bare noun indefinites are NPs without ‘one’ in object position with indefinite interpretation.

- Subject to speaker variation.
- Accusative case and modification sometimes dispreferred.
- Must stay VP-internal (cannot be scrambled).
- Take consistently narrow scope.

➤ Bare noun indefinites undergo (Pseudo) Noun Incorporation.
For concreteness, we implement an intensionalized version of Chung and Ladusaw’s (2004) Restrict and existential closure (EC):

\[(30) \quad \text{EC} \left(\text{Restrict} \left(\llbracket \text{buy} \rrbracket , \llbracket \text{rabbit} \rrbracket \right) \right)\]

\[= \lambda y . \lambda w . \exists x [y \text{ buys } x \text{ in } w \land x \text{ rabbit in } w]\]

EC applies at the VP/νP level, following Diesing 1992 a.o., so bare noun indefinites always take narrow scope.
Bare noun indefinites

For concreteness, we implement an intensionalized version of Chung and Ladusaw’s (2004) *Restrict* and existential closure (EC):

\[
\text{EC} (\text{Restrict} ([\text{buy}], [\text{rabbit}]))
\]

\[
= \lambda y . \lambda w . \exists x [y \text{ buys } x \text{ in } w \land x \text{ rabbit in } w]
\]

EC applies at the VP/\nu P level, following Diesing 1992 a.o., so *bare noun indefinites always takes narrow scope.*
For concreteness, we implement an intensionalized version of Chung and Ladusaw’s (2004) **Restrict** and existential closure (EC):

\[
\text{RESTRICT+EC}
\]

\[
\text{VP} \langle e, \langle s, t \rangle \rangle
\]

\[
\text{NP} \langle e, \langle s, t \rangle \rangle \quad \text{V} \langle e, \langle e, \langle s, t \rangle \rangle \rangle
\]

\[
\text{rabbit} \quad \text{buy}
\]

\[(30) \quad \text{EC} (\text{Restrict} (\llbracket \text{buy} \rrbracket , \llbracket \text{rabbit} \rrbracket))
\]

\[
= \lambda y . \lambda w . \exists x \llbracket y \text{ buys } x \text{ in } w \land x \text{ rabbit in } w \rrbracket
\]

EC applies at the VP/νP level, following Diesing 1992 a.o., so bare noun indefinites always takes narrow scope.
Bare noun indefinites

For concreteness, we implement an intensionalized version of Chung and Ladusaw’s (2004) Restrict and existential closure (EC):

\[
\text{RESTRICT+EC}
\]

\[
\begin{align*}
\text{VP} & : \langle e, \langle s, t \rangle \rangle \\
\text{NP} & : \langle e, \langle s, t \rangle \rangle \\
\text{V} & : \langle e, \langle e, \langle s, t \rangle \rangle \rangle \\
\text{rabbit} & : \text{buy}
\end{align*}
\]

\[(30) \quad \text{EC (Restrict ([buy], [rabbit]))} = \lambda y . \lambda w . \exists x [y \text{ buys } x \text{ in } w \land x \text{ rabbit in } w] \]

EC applies at the VP/nP level, following Diesing 1992 a.o., so bare noun indefinites always takes narrow scope.
The scope of indefinites

In contrast, the scope of ‘one’-indefinites is determined by the attachment height of $\exists f_{cf}$:

- For concreteness, suppose $\exists f_{cf}$ always adjoins to a TP.

 • **Negation**: Assume $T > \text{Neg} > \nu P$.
 \Rightarrow ‘One’-indefinites necessarily scope over negation

 • ‘Want’: Assume ‘want’ embeds a TP.
 \Rightarrow ‘One’-indefinite could scope above or below ‘want’:
 $$(\exists f_{cf}) [TP \ldots \text{want} (\exists f_{cf}) [TP \ldots f_{cf} \ldots]]$$

 • **Conditionals**:
 \Rightarrow ‘One’-indefinite can scope above or below *if*:
 $$(\exists f_{cf}) [TP [\text{if} (\exists f_{cf}) [TP \ldots f_{cf} \ldots]] \ldots]$$
The scope of indefinites

In contrast, the scope of ‘one’-indefinites is determined by the attachment height of \(\exists f_{cf} \):

- For concreteness, suppose \(\exists f_{cf} \) *always adjoins to a TP.*

- **Negation:** Assume \(T > \text{Neg} > vP \).
 \[\Rightarrow \text{‘One’-indefinites necessarily scope over negation} \]

- **‘Want’:** Assume ‘want’ embeds a TP.
 \[\Rightarrow \text{‘One’-indefinite could scope above or below ‘want’:} \]
 \[(\exists f_{cf}) [TP ... \text{want} (\exists f_{cf}) [TP ...\text{one}_{f} ...]]] \]

- **Conditionals:**
 \[\Rightarrow \text{‘One’-indefinite can scope above or below if:} \]
 \[(\exists f_{cf}) [TP [\text{if} (\exists f_{cf}) [TP ...\text{one}_{f} ...]]] ...] \]
The scope of indefinites

In contrast, the scope of ‘one’-indefinites is determined by the attachment height of $\exists f cf$:

- For concreteness, suppose $\exists f cf$ always adjoins to a TP.

- **Negation**: Assume $T > \text{Neg} > vP$.
 \Rightarrow ‘One’-indefinites necessarily scope over negation

- ‘Want’: Assume ‘want’ embeds a TP.
 \Rightarrow ‘One’-indefinite could scope above or below ‘want’:
 $$(\exists f cf) [TP ... \text{want} (\exists f cf) [TP ... \text{one}_f ...]]$$

- **Conditionals**:
 \Rightarrow ‘One’-indefinite can scope above or below *if*:
 $$(\exists f cf) [TP [if (\exists f cf) [TP ... \text{one}_f ...]]] ...]$$
The scope of indefinites

In contrast, the scope of ‘one’-indefinites is determined by the attachment height of $\exists f_{cf}$:

- **For concreteness**, suppose $\exists f_{cf}$ **always adjoins to a TP**.

- **Negation**: Assume $T > \text{Neg} > \nu P$.
 \Rightarrow ‘One’-indefinites necessarily scope over negation

- **‘Want’**: Assume ‘want’ embeds a TP.
 \Rightarrow ‘One’-indefinite could scope above or below ‘want’:
 \[(\exists f_{cf}) [TP \ldots \text{want} \ (\exists f_{cf}) [TP \ldots \text{one}_{f} \ldots]]\]

- **Conditionals**:
 \Rightarrow ‘One’-indefinite can scope above or below *if*:
 \[(\exists f_{cf}) [TP \ [\ if \ (\exists f_{cf}) [TP \ldots \text{one}_{f} \ldots]] \ldots]\]
The scope of indefinites

Our analysis thus derives the distinct scope-taking behavior of bare noun indefinites and ‘one’-indefinites:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>$\text{NEG} > \exists$</td>
<td>$\exists > \text{NEG}$</td>
</tr>
<tr>
<td>‘want’</td>
<td>$\text{want} > \exists$</td>
<td>$\exists > \text{want, want} > \exists$</td>
</tr>
<tr>
<td>conditional</td>
<td>$\text{if} > \exists$</td>
<td>$\exists > \text{if, if} > \exists$</td>
</tr>
</tbody>
</table>
§5 More on ‘one’
‘One’-definites?

We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Kona} \} \).

(31) \[
\begin{align*}
& \text{LF: } \exists f_{cf} \left[[\text{NP } [\iota s_r \text{ dog } \text{one}_{f \text{ cl}}]] \text{ likes Maunmaun in } w \right] \\
& = \exists f_{cf} \left[f(\lambda y . y \text{ atomic dog in } s_r \text{) likes Maunmaun in } w \right] \\
& \sim 1 \text{ iff Kona likes Maunmaun in } w
\end{align*}
\]

► The availability of “N” must block “N one-cl” in some way.
We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): *You and Maunmaun are at Hlahla’s house. She has one dog...*

Let $Y = \{y : y \text{ is an atomic dog in } s_r\} = \{\text{Kona}\}$.

(31) \[
\text{LF: } \exists f_{cf} [[NP [\iota s_r] [\text{dog [one}_f \text{ cl]}]] \text{ likes Maunmaun in } w] \\
= \exists f_{cf} [f(\lambda y . \, y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w] \\
\sim 1 \text{ iff Kona likes Maunmaun in } w
\]

The availability of “N” must block “N one-cl” in some way.
‘One’-defines?

We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Kona} \} \).

(31) \[
\begin{align*}
\text{LF: } & \exists f_{cf} \left[[NP [\iota s_r] [\text{dog [one}_f \text{ cl]]}] \text{ likes Maunmaun in } w \right] \\
= & \exists f_{cf} \left[f(\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w \right] \\
\leadsto & 1 \text{ iff Kona likes Maunmaun in } w
\end{align*}
\]

- The availability of “N” must block “N one-cl” in some way.
We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): *You and Maunmaun are at Hlahla’s house. She has one dog…*

Let $Y = \{y : y \text{ is an atomic dog in } s_r\} = \{\text{Kona}\}$.

(31) \[
\text{LF: } \exists f_{cf} \left[\left[\text{NP} \left[\iota s_r \right] \left[\text{dog} \left[\text{one}_f \text{ cl} \right] \right] \right] \text{ likes Maunmaun in } w \right] \\
= \exists f_{cf} \left[f(\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w \right] \\
\leadsto 1 \text{ iff Kona likes Maunmaun in } w
\]

▶ The availability of “N” must block “N one-cl” in some way.
‘One’-definites?

We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): *You and Maunmaun are at Hlahla’s house. She has one dog…*

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Kona} \} \).

\[(31) \text{ LF: } \exists f_{cf} \left[\left[\text{NP } [\iota s_r [\text{dog [one_f cl]]]] \right] \text{ likes Maunmaun in } w \right] \]
\[= \exists f_{cf} \left[f (\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w \right] \]
\[\sim 1 \text{ iff Kona likes Maunmaun in } w \]

▶ The availability of “N” must block “N one-cl” in some way.
‘One’-definites?

We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Kona} \} \).

(31) \[\text{LF: } \exists f_{cf} [[NP [\iota s_r] [\text{dog} [\text{one}_cl]]]] \text{ likes Maunmaun in } w \]
\[= \exists f_{cf} [f (\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w] \]
\[\sim 1 \text{ iff Kona likes Maunmaun in } w \]

The availability of “N” must block “N one-cl” in some way.
‘One’-definites?

We currently predict “N one-cl” to be felicitous in contexts that support a (unique or anaphoric) definite, contrary to fact.

Context for immediate situation definite (11): You and Maunmaun are at Hlahla’s house. She has one dog...

Let \(Y = \{ y : y \text{ is an atomic dog in } s_r \} = \{ \text{Kona} \} \).

(31) \[\text{LF: } \exists f_{cf} [[NP [\lambda s_r \text{ dog } [\text{one}_f \text{ cl}]]] \text{ likes Maunmaun in } w] \]
\[= \exists f_{cf} [f(\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w] \]
\[\sim 1 \text{ iff Kona likes Maunmaun in } w \]

\[\text{The availability of “N” must block “N one-cl” in some way.} \]
Blocking ‘one’-definites

(31) \[\text{LF: } \exists f_{cf} [[NP [\iota s_r] [\text{dog} [\text{one}_f \text{ cL}]]] \text{ likes Maunmaun in } w] \]
\[= \exists f_{cf} [f(\lambda y . y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w] \]
\[\sim 1 \text{ iff Kona likes Maunmaun in } w \]

(11’) \[\text{LF: } [[NP [\iota s_r] [\text{dog}]] \text{ likes Maunmaun in } w] \]
\[\sim 1 \text{ iff the unique dog in } s_r \text{ likes Maunmaun in } w \]
\text{presup: there is a unique dog in } s_r

2. “N one-cL” differs from “N” only in the addition of adjoined material. A \textbf{Non-Vacuity requirement on adjunction} may rule out “N one-cL” where “N” is available.
Blocking ‘one’-definites

(31) LF: \(\exists f_{cf} \left[\left[\text{NP} \left[\nu s_r \right] \left[\text{dog} \left[\text{one}_f \text{ cl} \right] \right] \right] \right. \) likes Maunmaun in \(w \)

\(= \exists f_{cf} \left[f(\lambda y. y \text{ atomic dog in } s_r) \right. \) likes Maunmaun in \(w \)

\(\leadsto 1 \text{ iff Kona likes Maunmaun in } w \)

(11’) LF: \(\left[\left[\text{NP} \left[\nu s_r \right] \left[\text{dog} \right] \right] \right. \) likes Maunmaun in \(w \)

\(\leadsto 1 \text{ iff the unique dog in } s_r \text{ likes Maunmaun in } w \)

presup: there is a unique dog in \(s_r \)

1. “N” introduces a uniqueness presupposition. “N” may block “N one-cl” by **Maximize Presupposition** (Heim 1991).

2. “N one-cl” differs from “N” only in the addition of adjoined material. A **Non-Vacuity requirement on adjunction** may rule out “N one-cl” where “N” is available.
Blocking ‘one’-definites

(31) \[\text{LF: } \exists f \subseteq [\exists [\text{NP} [\iota s_r] [\text{dog} [\text{one}_f \text{ cl}]]) \text{ likes Maunmaun in } w \]
\[= \exists f \subseteq [f (\lambda y. y \text{ atomic dog in } s_r) \text{ likes Maunmaun in } w] \]
\[\sim 1 \text{ iff Kona likes Maunmaun in } w \]

(11’) \[\text{LF: } \not\exists f \subseteq [\exists [\text{NP} [\iota s_r] [\text{dog} [\text{one}_f \text{ cl}]]) \text{ likes Maunmaun in } w \]
\[\sim 1 \text{ iff the unique dog in } s_r \text{ likes Maunmaun in } w \]
\[\text{presup: there is a unique dog in } s_r \]

2. “N one-cl” differs from “N” only in the addition of adjoined material. A \textbf{Non-Vacuity requirement on adjunction} may rule out “N one-cl” where “N” is available.
We argue that the Non-Vacuity approach is superior to the Maximize Presupposition approach. More specifically:

- When there is a unique referent for NP in s_r, and it is CL-atomic:
 \[
 \{ x : \llbracket \text{NP} \rrbracket (x)(s_r) \} = \{ x : \llbracket [\text{NP} \ [\text{one}_f \ \text{CL}]] \rrbracket (x)(s_r) \}
 \]
 is true regardless of the choice of f.

- We propose that Non-Vacuity is evaluated locally, at this point of adjunction,\(^3\) making the addition of “one-CL” ungrammatical if the denotation of the resulting NP (in the relevant situation s_r) is guaranteed to not change.

\(^3\)This requires look-ahead to the relevant situation variable specified by the determiner, e.g. ι / ι^x. An alternative would be for NP predicates to take situation variables directly (Keshet 2010, von Fintel and Heim 2011), pace Schwarz 2012.
We argue that the Non-Vacuity approach is superior to the Maximize Presupposition approach. More specifically:

- When there is a unique referent for NP in s_r, and it is cL-atomic:

 $$\{ x : [\text{NP}] (x)(s_r) \} = \{ x : [[\text{NP} [\text{one}_{cL}]]] (x)(s_r) \}$$

 is true regardless of the choice of f.

- We propose that Non-Vacuity is evaluated locally, at this point of adjunction, making the addition of “one-cL” ungrammatical if the denotation of the resulting NP (in the relevant situation s_r) is guaranteed to not change.

3This requires look-ahead to the relevant situation variable specified by the determiner, e.g. ι / ι^x. An alternative would be for NP predicates to take situation variables directly (Keshet 2010, von Fintel and Heim 2011), pace Schwarz 2012.
We argue that the Non-Vacuity approach is superior to the Maximize Presupposition approach. More specifically:

- When there is a unique referent for NP in s_r, and it is cl-atomic:

$$\{ x : [[\text{NP}]] (x)(s_r) \} = \{ x : [[\text{NP} [\text{one}_f \text{ cl}]]] (x)(s_r) \}$$

is true regardless of the choice of f.

- We propose that Non-Vacuity is evaluated locally, at this point of adjunction, making the addition of “one-cl” ungrammatical if the denotation of the resulting NP (in the relevant situation s_r) is guaranteed to not change.

3This requires look-ahead to the relevant situation variable specified by the determiner, e.g. ι / ι^x. An alternative would be for NP predicates to take situation variables directly (Keshet 2010, von Fintel and Heim 2011), pace Schwarz 2012.
This approach is supported by the fact that anaphoric definites can take ‘one’:

(32) You and MM are at a petting zoo when HH runs into you. The petting zoo has one horse and a few goats. All of you know this. HH asks you how MM’s liking the petting zoo. You tell her:

[MM ka myin néh s’aq tiq kaun ko caït-teh.]
MM NOM horse CONJ goat one CL.animal ACC liked-NFUT

MM ka ehdi myin (tiq kaun) ko c’ui-ne-teh.
MM NOM DEM horse one CL.animal ACC feed-PROG-NFUT

‘[Maunmaun likes the horse₅ and a goat₆.] Maunmaun is feeding the horse₅.’
Anaphoric definites with and without ‘one’

(32a) \(\text{LF: } \exists f_{cf} [\text{MM is feeding } [DP [\iota^x 5] [\text{NP horse } [\text{one}_f \text{ cl}]]]] \)
\(~\sim 1 \text{ iff for some } f_{cf}, \text{ MM is feeding } \\
\iota x[x = f(\lambda y . y \text{ atomic horse in } w) \land x = g(5)] \\
= 1 \text{ iff MM is feeding } g(5) \)
\text{presup: } g(5) = f(\lambda y . y \text{ atomic horse in } w) \text{ for some } f_{cf} \\
= g(5) \text{ is an atomic horse in } w \)

(32b) \(\text{LF: } [\text{MM is feeding } [DP [\iota^x 5] [\text{NP horse]}]] \)
\ (~\sim 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \land x = g(5)] \\
= 1 \text{ iff MM is feeding } g(5) \)
\text{presup: there is a unique } [\text{atomic horse in } w \text{ that is } g(5)] \\
= g(5) \text{ is an atomic horse in } w \)
(32a) LF: \[\exists f_{cf} \ [\text{MM is feeding} \ [\text{DP} \ [\iota^x 5] \ [\text{NP horse} \ [\text{one}_{f\ \text{CL}}]]]]\]
\[\sim 1 \text{ iff for some } f_{cf}, \text{ MM is feeding}\]
\[\iota x[x = f(\lambda y. y \text{ atomic horse in } w) \land x = g(5)]\]
\[= 1 \text{ iff MM is feeding } g(5)\]

presup: \[g(5) = f(\lambda y. y \text{ atomic horse in } w) \text{ for some } f_{cf}\]
\[= g(5) \text{ is an atomic horse in } w\]

(32b) LF: \[\ [\text{MM is feeding} \ [\text{DP} \ [\iota^x 5] \ [\text{NP horse}]]]\]
\[\sim 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \land x = g(5)]\]
\[= 1 \text{ iff MM is feeding } g(5)\]

presup: there is a unique [atomic horse in } w \text{ that is } g(5)]
\[= g(5) \text{ is an atomic horse in } w\]
(32a) \[\text{LF: } \exists f_{cf} \left[\text{MM is feeding } [\text{DP } \iota^x 5] [\text{NP horse } [\text{one}_f \text{ cL}]]] \right] \]
\[\sim 1 \text{ iff for some } f_{cf}, \text{ MM is feeding } \iota x[x = f(\lambda y \cdot y \text{ atomic horse in } w) \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: } g(5) = f(\lambda y \cdot y \text{ atomic horse in } w) \text{ for some } f_{cf} \]
\[= g(5) \text{ is an atomic horse in } w \]

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } \iota^x 5] [\text{NP horse}]]] \]
\[\sim 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: there is a unique } [\text{atomic horse in } w \text{ that is } g(5)] \]
\[= g(5) \text{ is an atomic horse in } w \]
(32a) \[\text{LF: } \exists f_{cf} [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse } [\text{one}_f \text{ cl}]]]] \]
\[\sim 1 \text{ iff for some } f_{cf}, \text{ MM is feeding } \]
\[\iota x [x = f(\lambda y . y \text{ atomic horse in } w) \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: } g(5) = f(\lambda y . y \text{ atomic horse in } w) \text{ for some } f_{cf} \]
\[= g(5) \text{ is an atomic horse in } w \]

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse}]]]] \]
\[\sim 1 \text{ iff MM is feeding } \iota x [x \text{ atomic horse in } w \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: there is a unique } [\text{atomic horse in } w \text{ that is } g(5)] \]
\[= g(5) \text{ is an atomic horse in } w \]
Anaphoric de/f_inites with and without ‘one’

(32a) \[\text{LF: } \exists f_{cf} [\text{MM is feeding } [\text{DP } \iota^x 5] [\text{NP horse } [\text{one}_f \text{ cl}]]]] \]
\[\sim 1 \text{ iff for some } f_{cf}, \text{MM is feeding } \]
\[\iota x[x = f(\lambda y. y \text{ atomic horse in } w) \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: } g(5) = f(\lambda y. y \text{ atomic horse in } w) \text{ for some } f_{cf} \]
\[= g(5) \text{ is an atomic horse in } w \]

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } \iota^x 5] [\text{NP horse}]]] \]
\[\sim 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: there is a unique } [\text{atomic horse in } w \text{ that is } g(5)] \]
\[= g(5) \text{ is an atomic horse in } w \]
Anaphoric deﬁnites with and without ‘one’

(32a) \[\text{LF: } \exists f_{cf} [\text{MM is feeding } [\text{DP } [\iota x \ 5] [\text{NP horse } [\text{one } f \ \text{cl}]])]]\]
\[\sim 1 \text{ iff for some } f_{cf}, \text{MM is feeding}\]
\[\iota x[x = f(\lambda y \cdot y \text{ atomic horse in } w) \land x = g(5)]\]
\[= 1 \text{ iff MM is feeding } g(5)\]
\[\text{presup: } g(5) = f(\lambda y \cdot y \text{ atomic horse in } w) \text{ for some } f_{cf}\]
\[= g(5) \text{ is an atomic horse in } w\]

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } [\iota x \ 5] [\text{NP horse}]])\]
\[\sim 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \land x = g(5)]\]
\[= 1 \text{ iff MM is feeding } g(5)\]
\[\text{presup: there is a unique } [\text{atomic horse in } w \text{ that is } g(5)]\]
\[= g(5) \text{ is an atomic horse in } w\]
Anaphoric definites with and without ‘one’

(32a) **LF:** \(\exists f_{cf} \ [\text{MM is feeding} \ [\text{DP} \ [\iota^x 5] \ [\text{NP horse} \ [\text{one}_f \ cl]]]]] \)
\(\leadsto 1 \text{ iff for some } f_{cf}, \text{MM is feeding} \)
\(\iota x[x = f(\lambda y . y \text{ atomic horse in } w) \wedge x = g(5)] \)
\(= 1 \text{ iff MM is feeding } g(5) \)
presup: \(g(5) = f(\lambda y . y \text{ atomic horse in } w) \) for some \(f_{cf} \)
\(= g(5) \) is an atomic horse in \(w \)

(32b) **LF:** [MM is feeding [\text{DP} [\iota^x 5] [\text{NP horse}]]]
\(\leadsto 1 \text{ iff MM is feeding } \iota x[x \text{ atomic horse in } w \wedge x = g(5)] \)
\(= 1 \text{ iff MM is feeding } g(5) \)
presup: there is a unique [atomic horse in \(w \) that is \(g(5) \)]
\(= g(5) \) is an atomic horse in \(w \)
(32a) \[\text{LF: } \exists f_{cf} [\text{MM is feeding } [\text{DP } [\nu^x 5] [\text{NP horse } [\text{one}_f \text{ cL}]])] \]
\[\sim 1 \text{ iff for some } f_{cf}, \text{ MM is feeding } \]
\[\nu x [x = f(\lambda y . y \text{ atomic horse in } w) \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
presup: \(g(5) = f(\lambda y . y \text{ atomic horse in } w) \) for some \(f_{cf} \)
\[= g(5) \text{ is an atomic horse in } w \]

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } [\nu^x 5] [\text{NP horse}]]] \]
\[\sim 1 \text{ iff MM is feeding } \nu x [x \text{ atomic horse in } w \land x = g(5)] \]
\[= 1 \text{ iff MM is feeding } g(5) \]
presup: there is a unique \([\text{atomic horse in } w \text{ that is } g(5)]\]
\[= g(5) \text{ is an atomic horse in } w \]
Anaphoric definites with and without ‘one’

(32a) \[\text{LF: } \exists f_{cf} [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse } [\text{one}_f \text{ CL}]]]] \]
\[\sim 1 \text{ iff MM is feeding } g(5)\]
\text{presup: } g(5) \text{ is an atomic horse in } w

(32b) \[\text{LF: } [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse}]]] \]
\[\sim 1 \text{ iff MM is feeding } g(5)\]
\text{presup: } g(5) \text{ is an atomic horse in } w

✓ Maximize Presupposition predicts no blocking.
× Global Non-Vacuity predicts blocking!
✓ \textit{Local} Non-Vacuity predicts no blocking:
\[\{ x : \llbracket \text{horse} \rrbracket (x)(w) \} = \{ x : \llbracket [\text{horse } [\text{one}_f \text{ CL}]] \rrbracket (x)(w) \}\]
is false for all choices of \(f \), \textit{as long as we’re in a world with multiple horses in it}...
Anaphoric deﬁnites with and without ‘one’

(32a) LF: \(\exists f_{cf} \ [\text{MM is feeding} \ [\text{DP} \ [\iota^x 5] \ [\text{NP horse} \ [\text{one} f \ \text{CL}]])]] \)
\(~\sim 1 \text{ iff MM is feeding } g(5)\)

presup: \(g(5) \text{ is an atomic horse in } w \)

(32b) LF: \([\text{MM is feeding} \ [\text{DP} \ [\iota^x 5] \ [\text{NP horse}])]] \)
\(~\sim 1 \text{ iff MM is feeding } g(5)\)

presup: \(g(5) \text{ is an atomic horse in } w \)

✓ Maximize Presupposition predicts no blocking.

× Global Non-Vacuity predicts blocking!

✓ Local Non-Vacuity predicts no blocking:

\(\{x : [\text{horse}] (x)(w)\} = \{x : [[\text{horse} \ [\text{one} f \ \text{CL}]]) (x)(w)\} \)

is false for all choices of \(f \), as long as we’re in a world with multiple horses in it...
Anaphoric definites with and without ‘one’

(32a) $\text{LF: } \exists f_c [\text{MM is feeding [DP } [\iota^x 5] [\text{NP horse [one}_f \text{ CL}}])]$

$\leadsto 1 \text{ iff MM is feeding } g(5)$

presup: $g(5)$ is an atomic horse in w

(32b) $\text{LF: } [\text{MM is feeding [DP } [\iota^x 5] [\text{NP horse}}])$

$\leadsto 1 \text{ iff MM is feeding } g(5)$

presup: $g(5)$ is an atomic horse in w

✓ Maximize Presupposition predicts no blocking.

✗ Global Non-Vacuity predicts blocking!

✓ Local Non-Vacuity predicts no blocking:

$$\{x : [\text{horse}] (x)(w)\} = \{x : [[\text{horse [one}_f \text{ CL}}]] (x)(w)\}$$

is false for all choices of f, as long as we’re in a world with multiple horses in it...
Anaphoric definites with and without ‘one’

(32a) \[\text{LF: } \exists f_{cf} \left[\text{MM is feeding } \left[\text{DP } \left[\iota^x \, 5 \right] \left[\text{NP horse } \left[\text{one}_f \, \text{CL} \right] \right] \right] \right] \]
\[\sim 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: } g(5) \text{ is an atomic horse in } w \]

(32b) \[\text{LF: } \left[\text{MM is feeding } \left[\text{DP } \left[\iota^x \, 5 \right] \left[\text{NP horse} \right] \right] \right] \]
\[\sim 1 \text{ iff MM is feeding } g(5) \]
\[\text{presup: } g(5) \text{ is an atomic horse in } w \]

✓ Maximize Presupposition predicts no blocking.
× Global Non-Vacuity predicts blocking!
✓ Local Non-Vacuity predicts no blocking:
\[\{ x : \lbrack \text{horse} \rbrack (x)(w) \} = \{ x : \lbrack \lbrack \text{horse } [\text{one}_f \, \text{CL}] \rbrack \rbrack (x)(w) \} \]
is false for all choices of \(f \), as long as we’re in a world with multiple horses in it...
Anaphoric definites with and without ‘one’

(32a) \[
\text{LF: } \exists f_{cf}\ [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse } [\text{one}_{f} \text{ CL}]]]]] \\
\sim 1 \text{ iff } \text{MM is feeding } g(5) \\
\text{presup: } g(5) \text{ is an atomic horse in } w
\]

(32b) \[
\text{LF: } [\text{MM is feeding } [\text{DP } [\iota^x 5] [\text{NP horse}]]] \\
\sim 1 \text{ iff } \text{MM is feeding } g(5) \\
\text{presup: } g(5) \text{ is an atomic horse in } w
\]

✓ Maximize Presupposition predicts no blocking.
× Global Non-Vacuity predicts blocking!
✓ Local Non-Vacuity predicts no blocking:
\[
\{ x : [\text{horse}] (x)(w) \} = \{ x : [[\text{horse } [\text{one}_{f} \text{ CL}]]] (x)(w) \}
\]
is false for all choices of \(f \), as long as we’re in a world with multiple horses in it...
Local Non-Vacuity predicts anaphoric definites with **globally unique entities** to disallow ‘one.’ MP predicts no such contrast.

(33) You run into Hlahla and Sansan on a hill at the break of dawn. You ask them what they are doing. Hlahla says:

[Ne tuaq-ne-pi.]
sun rise-PROG-TAM

Aung ka ehdi ne (?#tiq lòu) ko sha-ne-teh.
Aung NOM DEM sun one CL.round ACC look-PROG-NFUT

‘[The sun is rising.] Aung is looking for the sun.’

Speaker comment with *tiq lou*: Ok if there are other suns.
Anaphoric definites with and without ‘one’

Local Non-Vacuity predicts anaphoric definites with **globally unique entities** to disallow ‘one.’ MP predicts no such contrast.

(33) You run into Hlahla and Sansan on a hill at the break of dawn. You ask them what they are doing. Hlahla says:

\[
\text{[Ne tuaq-ne-pi.]} \\
\text{sun rise-PROG-TAM}
\]

Aung ka **ehdi ne** (?#tiq lòu) ko sha-ne-teh.
Aung nom dem sun one cl.round acc look-PROG-NFUT

‘[The sun is rising.] Aung is looking for the sun.’

Speaker comment with *tiq lou*: Ok if there are other suns.
Local Non-Vacuity predicts anaphoric definites with **globally unique entities** to disallow ‘one.’ MP predicts no such contrast.

(33) You run into Hlahla and Sansan on a hill at the break of dawn. You ask them what they are doing. Hlahla says:

[Ne tuaq-ne-pi.]
sun rise-PROG-TAM

Aung ka **ehdi ne** (?#tiq lòu) ko sha-ne-teh.
Aung nom dem sun one cl.round acc look-PROG-NFUT

‘[The sun is rising.] Aung is looking for the sun.’

Speaker comment with **tiq lou**: Ok if there are other suns.
In the basic case (modulo PNI), bare “N” is always definite and “N one-cl” is always indefinite.

A Non-Vacuity constraint blocks “one-cl” when its addition will not restrict the domain. Non-Vacuity derives anti-uniqueness inferences of ‘one’-indefinites (Hawkins 1978).

The (somewhat surprising) availability of ‘one’ with anaphoric definites — and its sensitivity to global uniqueness — supports this account over a Maximize Presupposition account.

Can we also derive a Novelty constraint (Heim 1982)? (But maybe it’s ok if we don’t...)
• In the basic case (modulo PNI), bare “N” is always definite and “N one-cl” is always indefinite.

A **Non-Vacuity constraint** blocks “one-cl” when its addition will not restrict the domain. Non-Vacuity derives anti-uniqueness inferences of ‘one’-indefinites (Hawkins 1978).

• The (somewhat surprising) availability of ‘one’ with anaphoric definites — and its sensitivity to global uniqueness — supports this account over a Maximize Presupposition account.

• Can we also derive a Novelty constraint (Heim 1982)? (But maybe it’s ok if we don’t...)
In the basic case (modulo PNI), bare “N” is always definite and “N one-cl” is always indefinite.

- A Non-Vacuity constraint blocks “one-cl” when its addition will not restrict the domain. Non-Vacuity derives anti-uniqueness inferences of ‘one’-indefinites (Hawkins 1978).

- The (somewhat surprising) availability of ‘one’ with anaphoric definites — and its sensitivity to global uniqueness — supports this account over a Maximize Presupposition account.

- Can we also derive a Novelty constraint (Heim 1982)? (But maybe it’s ok if we don’t...)
• In the basic case (modulo PNI), bare “N” is always definite and “N one-cl” is always indefinite.

► A **Non-Vacuity constraint** blocks “one-cl” when its addition will not restrict the domain. Non-Vacuity derives anti-uniqueness inferences of ‘one’-indefinites (Hawkins 1978).

• The (somewhat surprising) availability of ‘one’ with anaphoric definites — and its sensitivity to global uniqueness — supports this account over a Maximize Presupposition account.

• Can we also derive a Novelty constraint (Heim 1982)? (But maybe it’s ok if we don’t...)
§6 Conclusion
Summary

We analyze bare nouns as definites and propose an approach to ‘one’ which forms choice function indefinites from definites.

Some speakers allow bare noun indefinites, which take scope differently from ‘one’-indefinites.

The distinction between unique and anaphoric definites in taking ‘one’ supports our analysis of ‘one,’ constrained by local Non-Vacuity.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
<th>Dem N 1-cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>* (%obj)</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
<th>Dem N 1-cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>* (%obj)</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

- We analyze bare nouns as definites and propose an approach to ‘one’ which forms choice function indefinites from definites.
- Some speakers allow bare noun indefinites, which take scope differently from ‘one’-indefinites.
- The distinction between unique and anaphoric definites in taking ‘one’ supports our analysis of ‘one,’ constrained by local Non-Vacuity.
We analyze bare nouns as definites and propose an approach to ‘one’ which forms choice function indefinites from definites.

Some speakers allow bare noun indefinites, which take scope differently from ‘one’-indefinites.

The distinction between unique and anaphoric definites in taking ‘one’ supports our analysis of ‘one,’ constrained by local Non-Vacuity.
Summary

We analyze bare nouns as definites and propose an approach to ‘one’ which forms choice function indefinites from definites.

Some speakers allow bare noun indefinites, which take scope differently from ‘one’-indefinites.

The distinction between unique and anaphoric definites in taking ‘one’ supports our analysis of ‘one,’ constrained by local Non-Vacuity.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
<th>Dem N 1-cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>* (%obj)</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK if globally non-unique</td>
</tr>
</tbody>
</table>
We analyze bare nouns as definites and propose an approach to ‘one’ which forms choice function indefinites from definites.

Some speakers allow bare noun indefinites, which take scope differently from ‘one’-indefinites.

The distinction between unique and anaphoric definites in taking ‘one’ supports our analysis of ‘one,’ constrained by local Non-Vacuity.
A puzzling example

(34) You, Maunmaun and Sansan are in pet store. The store has multiple cats and dogs for sale. Sansan asks you which pet Maunmaun is interested in getting. You tell her:

[Maunmaun ka kwi tiq kaun yeh jiaung tiq kaun Maunmaun NOM dog one CL.animal CONJ cat one CL.animal yeh ci-ne-ta.]
CONJ look–PROG–TA

Maunmaun ka kwi tiq kaun ko weh-ne-teh.
Maunmaun NOM dog one CL.animal ACC buy–PROG–NFUT

‘[MM is looking at a dog and a cat.] MM is buying the dog.’
A puzzling example

Kwi tiq kaun “dog one-CL” in (34) could be...

- A demonstrative-less anaphoric definite with ‘one’:
 Possible under the view that there is a null variant of *ehdi i*.x.

- An indefinite not subject to a Novelty condition:
 Perhaps with *kwi tiq kaun* in the first sentence introducing a
 particular choice function \(f \) into the discourse, which is
 referenced in the second sentence’s *kwi tiq kaun*?

How can we distinguish these two views? Suggestions welcome!
A puzzling example

Kwi tiq kaun “dog one-cl” in (34) could be...

- A demonstrative-less anaphoric definite with ‘one’:
 Possible under the view that there is a null variant of *ehdi i*.

- An indefinite not subject to a Novelty condition:
 Perhaps with *kwi tiq kaun* in the first sentence introducing a particular choice function *f* into the discourse, which is referenced in the second sentence’s *kwi tiq kaun*?

How can we distinguish these two views? Suggestions welcome!
A puzzling example

Kwi tiq kaun “dog one-CL” in (34) could be...

- A demonstrative-less anaphoric definite with ‘one’:
 Possible under the view that there is a null variant of _ehdi i^x_.

- An indefinite not subject to a Novelty condition:
 Perhaps with _kwi tiq kaun_ in the first sentence introducing a
 particular choice function _f_ into the discourse, which is
 referenced in the second sentence’s _kwi tiq kaun_?

How can we distinguish these two views? Suggestions welcome!
Q: Does this analysis of ‘one’ extend to other numerals too?

Preliminarily, “N #-cl” with higher numerals appear to naturally allow definite plural readings, in contrast to “N one-cl.”

This may suggest a grammaticalized split between ‘one’ and other numerals, perhaps on the way to forming an indefinite determiner (see e.g. Givón 1981).
Q: Does this analysis of ‘one’ extend to other numerals too?

Preliminarily, “N #-CL” with higher numerals appear to naturally allow definite plural readings, in contrast to “N one-CL.”

This may suggest a grammaticalized split between ‘one’ and other numerals, perhaps on the way to forming an indefinite determiner (see e.g. Givón 1981).
Q: Does this analysis of ‘one’ extend to other numerals too?

Preliminarily, “N #-cL” with higher numerals appear to naturally allow definite plural readings, in contrast to “N one-cL.”

This may suggest a grammaticalized split between ‘one’ and other numerals, perhaps on the way to forming an indefinite determiner (see e.g. Givón 1981).
Thank you! Questions?

Q&A session: Friday, July 24th, 10:30am CEST / 4:30pm Singapore

We thank our speakers Phyo Thi Han, Kaung Mon Thu, Phyo Thura Htay, and Nyan Lin Htoo. For comments and discussion, we thank members of the NUS syntax/semantics lab and Hadas Kotek.

