We report on the expression of singular nominals in Burmese, an article-less language, from original elicitation work.

Singular definites and indefinites trigger uniqueness and anti-uniqueness inferences (Hawkins 1978 a.o.):

1. **The** exchange student passed my class.
 \[\sim contextual\ uniqueness\]
2. **An** exchange student passed my class.
 \[\sim contextual\ anti-uniqueness\]

This anti-uniqueness in (2) is commonly thought to be due to competition via Maximize Presupposition (MP) between the articles \{the, a\} (Heim 1991; Percus 2006, Sauerland 2008 etc.).

How do article-less languages convey (anti-)uniqueness?

Preview:

- Bare NPs are singular definites. **Singular indefinites** take the numeral ‘one’ and a classifier (cf Givón 1981).

 - ‘One’ is a modifier that restricts the nominal domain to a singleton, based on a choice function \(f\). We adjoin \(\exists f\) above to build a choice function indefinite out of a “definite” DP.

- The addition of ‘one’ is restricted by an Adjunct Non-Vacuity constraint, evaluated locally (see Singh 2011, Erlewine and New 2019).

- Evidence from anaphoric definites with ‘one’ serves to support this view and argue against an MP-based alternative.

Data

Analysis

Anti-uniqueness

Alternatives
Burmese uses **numeral ‘one’** and **demonstratives** to express (in)definiteness distinctions:

- Singular indefinites use ‘one’ (cf Givón 1981)
- Unique indefinites must be bare
- Anaphoric indefinites take dem. *ehdi* or are bare

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>N 1-cl</th>
<th>Dem N</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef</td>
<td>*</td>
<td>OK</td>
<td>*</td>
</tr>
<tr>
<td>unique def</td>
<td>OK</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>anaphoric def</td>
<td>OK</td>
<td>*</td>
<td>OK</td>
</tr>
</tbody>
</table>

(3) Indefinite (specific and nonspecific):

You work in a doggy day care. {**Specific**: There are multiple dogs in the room with you and you are on the phone with Hlahla. You see one of the dogs scratching on the door. Hlahla asks you what that noise is. / **Nonspecific**: There are multiple dogs outside and you and Hlahla are in the back room. You hear a dog scratching on the door, but don’t know which dog it is.} You tell her:

Kwi *(tiq kaun)* ka tank’à ko c’iq-ne-teh.
do one CL.animal NOM door ACC scratch-TAM

‘A dog is scratching the door.’

(4) Situationaly unique definite:

You and Maunmaun are at Hlahla’s house. She has one dog, who is playing with MM. Neither of you can see them right now. You tell her:

(*Ehdi) **kwi (tiq kaun) ko cait-ne-teh.**
dem dog one CL.animal NOM MM ACC like-TAM

‘The dog likes Maunmaun.’

(5) Anaphoric definite:

You go to an adoption drive with MM. There’s an open area for the animals to hang out and people to mingle about. Up for adoption are a few dogs and cats. When MM causes trouble, you tell an organiser:

[Maunmaun ka **kwi (tiq kaun) néh caun tiq Maunmaun NOM dog one CL.animal CONJ cat one kaun ko hnuqsahaq-ne-teh.]

CL.animal ACC bother-PROG-NFUT

(Ehdi) **kwi ka Maunmaun ko laiq-ne-teh.**
dem dog NOM Maunmaun ACC chase-PROG-NFUT

‘[Maunmaun was bothering a dog and a cat.] The dog is chasing Maunmaun.’

We present examples in subject position here; the facts are different in object position, where incorporation is possible. **‘One’-indefinites as in (2) are flexible in their scope.** See Lim and Erlewine 2020.
All nominals (without determiners) take null ι:

\begin{align}
(6) \quad [\iota] &= \lambda s_r . \lambda P_{(e, (s, t))} . \exists! x[P(x)(s_r)] . \iota x[P(x)(s_r)] \\
\text{Situation } s_r \text{ allows for contextual restriction.}
\end{align}

(4') $[[[\iota s_r] \text{ dog}]] = \iota x[x \text{ is a dog in } s_r]$

presup: there is a unique dog in s_r

Anaphoric definities take ι^x:
(see Schwarz 2009, Jenks 2018)

\begin{align}
(7) \quad [\iota^x (ehdi)] &= \lambda y . \lambda P_{(e, (s, t))} . \exists! x[P(x)(w) \land x = y] . \iota x[P(x)(w) \land x = y] \\
\iota^x \text{ takes an index } y, \text{ instead of a situation}.^1
\end{align}

(5') $[[[\iota^x 3] \text{ dog}]] = \iota x[x \text{ dog in } w \land x = g(3)] = g(3)$

presup: there is a unique [dog in w that is $g(3)$]

i.e. $g(3)$ is a dog

‘One’ is a modifier:

- ‘One’ restricts the domain to a singleton, based on a choice function f. \(^2\)

\begin{align}
(8) \quad [[\text{one}_f \ CL]] &= \lambda P_{(e, (s, t))} . \lambda x . \lambda s_r . \lambda y . P(y)(s_r) \land \text{ATOM}_{CL}(y) \\
&= \iota x[x = f_{cf}(\lambda y . P(y)(s_r) \land \text{ATOM}_{CL}(y))] \\
(2') \quad [[[[\iota s_r] \text{ dog} [[\text{one}_f \ CL]]]]] &= \iota x[x = f_{cf}(\lambda y . y \text{ is an atomic dog in } s_r)]
\end{align}

We adjoin $\exists f_{cf}$ above, creating a choice function indefinite from this “definite” DP.

\begin{align}
(2'') \quad LF: \quad &\exists f_{cf} [[[[[\iota s_r] \text{ dog} [[\text{one}_f \ CL]]]]]] \text{ s-t-d in } w] \\
&= \exists f_{cf} [f(\lambda y . y \text{ atomic dog in } s_r) \text{ s-t-d in } w] \\
&\sim 1 \text{ iff a dog in } s_r \text{ is scratching the door in } w
\end{align}

This predicts:
<table>
<thead>
<tr>
<th>bare NP</th>
<th>NP ‘one’-CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>exactly 1 NP in s_r:</td>
<td>✓</td>
</tr>
<tr>
<td>> 1 NP in s_r:</td>
<td>#</td>
</tr>
</tbody>
</table>

\(^1\)Following a suggestion by Angelika Kratzer p.c. to Schwarz (2009: p. 264 fn. 16) and turns out to be important. ι^x is Jenks’s term.

\(^2\) $[[CL]] = \lambda P_{(e, (s, t))} . \lambda x . \lambda P_{(e, (s, t))} . \lambda x . \lambda s_r . P(x)(s_r) \land \text{ATOM}_{CL}(x) \\
[tq_{f} \text{ ‘one’}] = \lambda CL . \lambda P_{(e, (s, t))} . \lambda x . \lambda s_r . x = f_{cf}(\lambda y . CL(P)(y)(s_r))}$
Evidence for this approach comes from anaphoric definites with ‘one’:

(12) **Anaphoric definites can take ‘one’**:

[‘MM was bothering a dog₃ and a cat₄.’] or
[‘MM was bothering the dog₃.’] (unique in sₖ)

Ehdi kwi (tiq kaun) kon MM ko laiq-ne-teh.
DEM dog one **CL NOM MM ACC chase-TAM**
‘The/that (one) dog₃ is chasing MM.’

- ‘One’ in (12) shows it has not grammaticalized into an indefinite article (cf Givón 1981).
- The availability of ‘one’ in a context with a situationally unique NP shows that ‘one’ here does not require contextual anti-uniqueness.

(13) **But not if the NP is globally unique**:

[‘The sun₅ is rising.’]

Aung ka ehdi ne (?#tiq lou) ko sha-ne-teh.
Aung NOM DEM sun one **CL ACC look-TAM**
‘Aung is looking for that (#one) sun₅.’

Comment with **tiq lou**: Ok if there are other suns.

3 See Erlewine and New 2019 for an argument for cyclic (clause-level) evaluation of Non-Vacuity, incidentally also from Burmese.
Q: Can we derive the anti-uniqueness inferences from **Maximize Presupposition**? (Heim 1991; see also Percus 2006, Sauerland 2008, Singh 2011 etc.)

Bare “NP” vs “NP one cL”:
Rouillard and Schwarz 2016 proposes that Katzir’s (2007) “deletion alternatives” are relevant competitors for MP. **Bare “NP” (14) is a deletion alternative of “NP one cL” (15), and (16) is presuppositionally stronger!**

(14) **LF for bare “NP”:**
\[\exists f_{cf} [[[[t s_r] [dog [\text{one} f_{cf} cL]]]] s-t-d in w] \]
\sim 1 iff the unique dog in \(s_r \) is s-t-d in \(w \)
presup: there is a unique dog in \(s_r \)

(15) **LF for “NP one cL”:**
\[\exists f_{cf} [[[[t s_r] [dog [\text{one} f cL]]]] s-t-d in w] \]
\[= \exists f_{cf} [f(\lambda y . y \text{atomic dog in } s_r) s-t-d in w] \]
\sim 1 iff a dog in \(s_r \) is scratching the door in \(w \)
presup: ‘dog’ is non-empty in \(s_r \)

If ‘dog’ is a singleton in \(s_r \), e.g. \{\dog\}, \(f_{cf} \) always returns the same individual, e.g. \dog.

Anaphoric “ehdi NP” vs “ehdi NP one cL”:
Among DPs with demonstrative *ehdi*, “**ehdi NP** (16) is again a deletion of “**ehdi NP one cL” (17).”

(16) **LF for “ehdi NP”:**
\[\exists f_{cf} [[[[t^x 3] [dog [\text{one} f_{cf} cL]]]] s-t-d in w] \]
\sim 1 iff the uniq. [dog in \(w \) that’s \(g(3) \)] is s-t-d in \(w \)
presup: there is a unique [dog in \(w \) that’s \(g(3) \)]
\[\iff g(3) \text{ is a dog in } w \]

(17) **LF for “ehdi NP one cL”:**
\[\exists f_{cf} [[[[t^x 3] [dog [\text{one} f cL]]]] s-t-d in w] \]
\[= \exists f_{cf} [t^x [x = f(\lambda y . y \text{atomic dog in } w) \land \]
\[x = g(3)] s-t-d in w] \]
presup: there is a \(f_{cf} \) which takes the atomic dogs in \(w \) and returns \(g(3) \)
\[\iff g(3) \text{ is a dog in } w \]

A: (16) and (17) are equivalent in their presuppositions. **The global anti-uniqueness of ‘one’ in anaphoric definites (12–13) is explained by Maximize Presupposition!**
Email: mitcho@nus.edu.sg, meghan.lim@u.nus.edu

Rouillard, Vincent, and Bernhard Schwarz. 2016. Epistemic narrowing from Maximize Presupposition. In *NELS 47*.

