Counterexpectation, concession, and free choice in Tibetan and beyond

Michael Yoshitaka Erlewine, mitcho@nus.edu.sg
National University of Singapore
Triple A 7, July 2020

1 Introducing Tibetan *yin.na’ang*

Tibetan *yin.na’ang* (ཡིན་གཉིང) appears to have three distinct uses:

1. **Counterexpectational discourse particle ‘however’:**

 bKra.shis dge-rgan red. **yin.na’ang** spyang.po mi’dug.

 Tashi teacher **cop** YIN.NA’ANG clever **neg-aux**

 ‘Tashi is a teacher. However, [he] isn’t smart.’

2. **Concessive scalar focus particle:**

 book one YIN.NA’ANG read-cond exam succeed-IMPF-aux

 ≈ ‘[If you] read even/at least [one] book, [you] will pass the exam.’

3. **Wh universal free choice item (V-FCI):**

 Norbu food what YIN.NA’ANG eat-IMPF-aux

 ‘Norbu eats *anything* / any food.’

Yin.na’ang is also variably *yin.na.yang* (ཡིན་གཉིང རང) or *yin.ni’i* (ཡིན་ཉི’ི) and is morphologically clearly:

(4) སྐྱེན་ སྐྱེན་ རང་ སྐྱེན་ རང་ སྐྱེན་ རང་ སྐྱེན་ རང་ སྐྱེན་ རང་

yin + **na** + **yang** = yin.na.yang > yin.na’ang > yin.ni’i

copula cond even

Roughly, then, *yin.na’ang = even-if-it’s.*

Today:

- I document these uses of Tibetan *yin.na’ang* from original fieldwork and develop a compositional semantics which derives these uses from (4).
 - I develop a new approach to the semantics of universal free choice, which does not stipulate its quantificational force.
- Similar constructions — with the same/similar ingredients and the same/similar range of uses — is attested in *Dravidian languages* (Balusu 2020) and *Japanese*.

(5) **cop-cond-even** particle focus particle **wh-quant.**

<table>
<thead>
<tr>
<th>Language</th>
<th>yin.na’ang</th>
<th>‘but’</th>
<th>CSP</th>
<th>v-FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibetan</td>
<td>yin.na-yang</td>
<td>‘but’</td>
<td>CSP</td>
<td>v-FCI</td>
</tr>
<tr>
<td>Kannada</td>
<td>aad-ar-wu</td>
<td>‘but’</td>
<td>CSP</td>
<td>v-FCI, 3-FCI, NPI</td>
</tr>
<tr>
<td>Japanese</td>
<td>de—mo</td>
<td>‘but’</td>
<td>CSP, ‘for ex.’</td>
<td>v-FCI</td>
</tr>
</tbody>
</table>

Such evidence further supports the (de)compositional approach. I discuss extensions of the analysis for Tibetan to these languages as well.

Roadmap §2 Counterexpectational • §3 Morphosyntactic aside • §4 Concessive scalar • §4 Wh universal free choice • §5 Cross-linguistic extensions

All Tibetan data is from my fieldwork in Dharamsala, India in summers 2018 and 2019. Abbreviations: **aux** = auxiliary, **cop** = copula, **imp** = imperative, **impp** = imperfective, **cond** = conditional, **neg** = negation; **dav** = dative, **erg** = ergative; **ord** = ordinal. The Wylie romanization is employed here, with periods indicating syllable boundaries where there is no morpheme boundary.

1This reflects the general reduction of *ཡིན་* <yang> even to *ི* <y>/y/, common in speech (Tournadre and Sanga Dorje 2003: 409). Goldstein 2001 lists all three forms (p. 1000), but identifying *ཡིན་* yin.na’ang as the canonical form. I follow this convention here.

I thank Kunga Choedon, Pema Yonden, and Tenzin Kunsang for patiently sharing their language with me. For earlier comments and discussion, I thank Maayan Abenina-Adar, Rahul Balusu, Kenyon Branain, Shihwei Chen, Chris Davis, Hadas Kotok, Elin McCready, and audiences at NELS 50, LSA 2020, and the National University of Singapore.
2 Counterexpectational discourse particle

- “Yin na’ang q” refers to a prior proposition p and (a) requires an expectation that “if p, unlikely q” and (b) commits the speaker to q.

(6) Counterexpectation is required:

Kho kha.lag mang.po za-gi.red.
he food a.lot eat-IMPF-AUX

Yin na’ang rgyags.pa chags-gi-ma-#(ma)-red.
yin.na’ang fat become-IMPF-NEG-AUX

‘He eats a lot of food. However, he doesn’t gain weight.’

Analysis

Yin na’ang takes an unpronounced propositional anaphor:

(7) [[pro-f]$_{p}$ yin-na] =yang q

COP-COND EVEN

Literal LF: EVEN (if it’s [p], q)

(8) Deriving counterexpectation:

a. Let P be a set of relevant alternatives to p — propositions p' where the conditional “if p', q” is relevant to consider.

b. EVEN requires that the conditional “if p, q” be less likely than “if p', q” for all $p' \in P$. (Horn 1969; see also Bennett 1982, von Fintel 1994)

c. This scalar condition requires low credence in “if p, q,” incompatible with an expectation that “if p, likely q.” This utterance therefore signals and reinforces an expectation that “if p, likely not q.”

(9) Deriving commitment to q: (via commitment to p)

a. The proposition p was asserted prior by the same speaker or by another speaker and not denied, committing the speaker to p.

b. The speaker asserts “if p, q.”

c. By Modus Ponens, the speaker is committed to q.

(10) Deriving commitment to q: (without commitment to p)

a. Assume that P in (8) exhausts all relevant possibilities. This is what Bennett (1982) calls an “introduced” even if conditional.

b. In such cases, the assertion “even if [p], q” implicates the truth of the consequent q. See von Fintel 1994: §5.3.3 for discussion.

Summary

- What we’ve done is to use EVEN to build a concessive (‘although/even though’) relation from a causal one, as is cross-linguistically common (König 1991: 82–83), and use that to signal counterexpectation.

See also Ippolito 2004 for related discussion of English concessive still and Balusu 2020 for a similar analysis of Kannada aad-ar-uu.

3 On the syntax of X=yin.na’ang

Taking the morphology of yin.na’ang at face value — COPULA + CONDITIONAL + EVEN (4) — yin.na’ang is a copular conditional clause with even.

Let’s look at another FCI example in more detail...

(11) Context: Pema is very friendly.

Pad.ma [(phru.gu) su_yin.na’ang]=la skad.cha bshad-gi-red.
Pema child who YIN.NA’ANG=DAT speech talk-IMPF-AUX

‘Pema talks to anyone / any child.’ (habitual)

Two questions for the form X=yin.na’ang (FCI and concessive scalar):

1. the arguments of the copular predicate; and
2. X=yin.na’ang in argument position.
3.1 The arguments of the copular predicate

At first glance, it may be tempting to describe the wh-FCI as a wh-phrase + yin.na’ang.

(12) But wh=yin.na’ang doesn’t take ‘which’ phrases:
 a. [kha.lag ga:gi] yin.na’ang food
 b. [phru.gu ga:gi] yin.na’ang child
 ‘any (of the) food’ ‘any child / of the children’

Instead, I propose that the nominal (if present) is the first argument to the copula, as a bare definite, and the simplex wh is the second.\(^2\) With no nominal, the first argument is pro.

(13) Wh=yin.na’ang takes a nominal and a simplex wh-word:
 a. [(kha.lag) ga:re] yin.na’ang food
 b. [(phru.gu) su] yin.na’ang child
 ‘any (of the) food’ ‘any child / of the children’
 lit. ‘even if (the food/it) is what’ lit. ‘even if (the child/that) is who’

Similarly, for concessive scalars, I take the first argument of the copular predicate to be pro.

3.2 X=yin.na’ang in argument position

Again, the morphology of yin.na’ang suggests that X=yin.na’ang is a conditional clause with a copular description, plus even.

But X=yin.na’ang is in an argument position! This is clear in examples like (11) where X=yin.na’ang takes dative case.

\(^2\)This by itself may not explain why ‘which’-phrases are ruled out: How come a structure akin to ‘even if pro is which child’ is unavailable? I do not have an answer to this yet.

X=yin.na’ang is a clausal structure in an argument position which describes that argument; in other words, a head-internal relative or amalgam (Lakoff 1974; see also Kluck 2011):

(14) John is going to think it’s Chicago on Saturday. (Lakoff 1974: 324)

...but many approaches to head-internal relatives and amalgams will not apply here, as the embedded clause is a conditional clause.

\(^3\)Tibetan also generally has head-internal relatives (DeLancey 1999, Erlewine 2019a).

Rahul Balusu (p.c.) observes that Hirsch 2016 seems to have independently proposed an analysis much like (15) for the interpretation of English ever free relatives.

4 Concessive scalar focus particle

Concessive scalar particles are licensed in non-veridical environments and...

- Alonso-Ovalle (2016: 185): “trigger a characteristic interpretation: they convey a strengthening effect in downward entailing environments, a ‘settle for less’ interpretation in modal contexts...” and
- Crnič (2011: 5): associate with “lowest element on the pragmatic scale.”

(16) Spanish aunque sea (Lahiri 2010)
 a. ¡Déme aunque sea un vaso de agua, médico de mierda! give.me although even one glass of water doctor of shit ‘Give me at least [a glass of water], you crappy doctor!’
 b. Si lees aunque sea UN libro, vas a aprobar. if you read although even one book, you’ll pass
 ≈ ‘If you read even just/at least [one] book, you’ll pass.’

Languages vary in whether negation licenses CSPs (Alonso-Ovalle 2016).
(17) **CSP yin.na’ang licensed by a conditional:**

\[\text{yin.na’ang licensed by a conditional:} \]

\[\text{[Dep geig/#gsum]F yin.na’ang klog-na yig.tshad mthar.khyol-gi-red.} \]

book three/#three yin.na’ang read-cond exam succeed-IMP-AUX

\[\approx \text{‘If you read even just one/#three book(s), you will pass the exam.’} \]

(18) **CSP yin.na’ang licensed by negation:**

\[\text{bKra.shis ang [gsum]F-pa yin.na’i len-*\text{(mi)}-dug.} \]

Tashi number three-ORD yin.na’ang receive-NEG-AUX

‘He didn’t even get [third]F place.’

(19) **CSP yin.na’ang licensed in an imperative:**

\[\text{Kha.lag [tis]F yin.na’i za-(dang)!} \]

food a little yin.na’ang eat-IMP

\[\approx \text{‘Eat at least a little food!’} \]

Analysis, in the spirit of Lahiri 2010

(20) ** Licensing in a conditional (17):**

a. **LF:** even \([s]\) if \(t_4\)’s [one/three]F book,

\[[\alpha] = \text{‘if } t_4 \text{‘s three books, [if you read it}_4, \text{ you will pass the exam] } \]

b. \([\alpha]^n = \{ \text{‘if } t_4 \text{‘s } n \text{-th place, Tashi didn’t get } t_6 \}

\[\text{Assuming getting first place is less likely — or more noteworthy (Herburger 2000) — than second, etc., not getting third place will be the least likely, satisfying E Ven.} \]

This reasoning relies on the negation to reverse likelihood relations, and thus follows the general logic of weak elements associating with **even** to form NPIs (Lahiri 1998; see also Lee and Horn 1995).

(21) **Licensing by negation with ‘even’ reading (18):**

Consider only first, second, third places here.

a. **LF:** even \([s]\) if \(t_6\)’s [third]F place, Tashi didn’t get \(t_6 \]

b. \([\alpha] = \text{‘if } t_4 \text{‘s third place, Tashi didn’t get } t_6 \]

\([\alpha]^n = \{ \text{‘if } t_4 \text{‘s } n \text{-th place, Tashi didn’t get } t_6 : n \in \{1, 2, 3\} \}

\]

(22) **Licensing yin.na’ang in an imperative (19):**

a. **LF for (19):** even \([s, \text{imp}]\) if it’s [a little]F food3, you eat it3)

\(\text{IMP represents the imperative speech act operator.} \]

b. If imperatives don’t have truth conditions (pace Kaufmann 2012),

we can’t order them by likelihood or entailment. But we can order imperatives by **noteworthy** (Herburger 2000).

c. In a context where a stronger request — e.g. **imp**(if it’s a lot of food3, you eat it3) — is also appropriate, the speaker’s choice to make the weaker request with ‘little’ is noteworthy, satisfying E Ven.

d. This derives the “at least” or “settle for less” (Alonso-Ovalle 2016)

\[\text{flavor of the concessive scalar particle: Alternative imperatives with higher values would also be appropriate.} \]

Following Lahiri 2010 on **aunque sea** (see footnote 5), the combination of a copula, conditional, and ‘even’ can derive these interpretations of concessive scalar yin.na’ang.
5 Wh universal free choice item

Universal free choice items (\(\forall\)-FCIs) are licensed in a range of modal/conditional and non-episodic (non-veridical; Giannakidou 2001) environments and lead to universal free choice inferences:

\(f(FCl) \Rightarrow \) for any choice of \(x \), \(f(x) \) is true

(Giannakidou 2001’s “quasi-universal effect”; Kratzer and Shimoyama 2002’s “distribution requirement”)

Preliminaries

As \(wh=yin.na’ang \) FCIs involve a \(wh \)-word, I introduce some background:

(24) Tibetan is \(wh \)-in-situ; no bare \(wh \) indefinites:

\([\text{TP} \quad \text{Thugs.spro-la} \quad \text{su-slebs-song}] \quad (-\text{pas?}) \)

\(\text{party-dt} \quad \text{who-arrive-aux} \quad \text{-Q} \)

‘Who came to the party?’ / “Someone came to the party’

(25) Wh-even NPIs: (see Erlewine and Kotek 2016)

\([\text{TP} \quad \text{Thugs.spro-la} \quad su-\text{yang sl} \quad \text{lesbs-}(\text{ma})-\text{song}] \)

\(\text{party-dt} \quad \text{who-even arrive-NEG-aux} \)

‘No one came to the party.’

I employ the framework for \(wh \)-quantification in Alternative Semantics in my work in progress; see e.g. Erlewine 2019b.

- \(\text{Wh} \)-words have an alternative set ranging over its domain but no ordinary value (Ramchand 1997, Beck 2006, Kotek 2014):

(26) a. \([\text{su/who}]^0 \) undefined

b. \([\text{su/who}]^{alt} = \{ x : x \ \text{animate} \} \)

(27) a. \([\text{TP}]^0 \) undefined

b. \([\text{TP}]^{alt} = \{ \text{\textquoteright} \text{Tashi came..., \text{"Sonam came..., ...\} \}

(28) Interpretability: (based on intuitions in Rooth 1992, Beck 2006)

To interpret \(a \), \([\alpha]^0 \) must be defined and \(\in [\alpha]^{alt} \).

- To interpret \([\text{TP}] \) in (27) above as a question, an operator AltShift applies to convert it into a valid question denotation. See Kotek 2019.

- Focus particles such as \(\text{even} \) can’t compose with (27) because they require a defined ordinary value (the prejacent).

- To fix this problem, I propose the following covert \(\exists:6 \)

(29) a. \([\exists \alpha]^0 = \sqrt[\alpha]{\alpha} \)

b. \([\exists \alpha]^{alt} = [\alpha]^{alt} \)

- \([\exists \text{TP}] \) does not result in an interpretable bare \(\text{wh} \)-indefinite, because its result violates Interpretability (28). But it allows focus particles such as \(\text{even} \) to apply, which then resolve the Interpretability problem by “resetting” the alternative set.

(30) Reset:

\(\text{Op} \) is “resetting” if it specifies \([\alpha]^{alt} := \{ [\alpha]^0 \} \)

This allows for a compositional derivation of \(\text{wh-even NPIs} \) in Tibetan (25), following the Lahiri 1998 logic for enforcing polarity-sensitivity through a scalar particle. See Erlewine 2020.

Analysis

(31) Computing the \(\text{wh} \) \(\forall \)-FCI in (11):

a. Literal (11): Pema talks to \([\text{even if \{pro/the child\} is who}] \)

b. LF: \(\text{even} [_ \text{if} [\exists _ \text{it7's who}], [_ \text{she talks to them7}]]\)
(32) a. \([a]^v = ^\forall x, \text{ if it's } x \text{ human, she talks(habitual) to them}\)
 b. \([a]^\text{alt} = \{ ^\forall x, \text{ if it's } x, \text{ she talks(habitual) to them} : x \text{ human}\}\)

(33) \(\forall x \text{ characteristic situations } s \text{ and assignments } g, \text{ where } g(7) \text{ exists and is human in } s, \text{ she talks to } g(7) \text{ in } s\)

(34) a. \([a]^v = ^\forall x, g[g(7) \text{ defined, human in } s \rightarrow \text{ she talks to } g(7) \text{ in } s]\)
 b. \([a]^\text{alt} = \{ ^\forall x, g[g(7) = x \rightarrow \text{ she talks to } g(7) \text{ in } s] : x \text{ human}\}\)

\([a]^v\) asymmetrically entails every alternative in \([a]^\text{alt}\).

The universal force of \(\forall\)-FCIs comes from the universal modal/temporal quantification — here, habitual — which is restricted by the conditional!

(35) **But what if the conditional restricts a possibility modal?**
 a. \(\exists x \text{ accessible } w \text{ and assignment } g, \text{ where } g(7) \text{ exists and is human in } w, \text{ she talks to } g(7) \text{ in } w\)
 b. \([a]^v = ^\exists x, g[g(7) \text{ defined, human in } w \land \text{ she talks to } g(7) \text{ in } w]\)
 \([a]^\text{alt} = \{ ^\exists x, g[g(7) = x \land \text{ she talks to } g(7) \text{ in } w] : x \text{ human}\}\)

But here, the prejacent \([a]^v\) is weaker than each of the alternatives in \([a]^\text{alt}\). The prejacent cannot be less likely than its alternatives, so even is infelicitous!

The semantics of even ensures that \(wh=\text{yin.na’ang} \approx \text{ even if it's someone}\) conditionals can only restrict universal modal/temporal operators!

(36) **Wh-yin.na’ang FCI with deontic possibility modal:**

1sg-GEN dog food what YIN.NÁ’ANG eat-ALLOWED-IMPF-AUX
‘My dog is allowed to eat anything / any food.’

(37) **\(\forall\)-FCI with possibility modal in (36):**
 a. **Literal (3):** My dog **IMPF** [ALLOWED eat [even if the food is what]]
 b. If the food, exists, my dog **ALLOWED** eat it, \(\times\) EVEN
 c. If the food, exists, **IMPF** [my dog ALLOWED eat it,] \(\bigcirc\) EVEN
 \[\Rightarrow \forall-FC > \text{ ALLOWED}\]

(38) **Wh-yin.na’ang is ungrammatical in episodic descriptions:**

Tashi now food what YIN.NÁ’ANG eat-finish-AUX
Intended: \(\approx\) Tashi finished eating any food right now.’

Episodic descriptions claim the existence of a particular event: here, that there was a completion of eating, in the past, in the halo of ‘now.’

There is no modal/temporal operator which supplies universal force and therefore the prejacent will not be less likely than its alternatives, so even cannot be satisfied here.

6 **Conclusion**

Tibetan yin.na’ang has three functions:

1. **Yin.na’ang** counterexpectational discourse particle
2. **X yin.na’ang** concessive scalar focus particle
3. **wh yin.na’ang** universal free choice item
All three uses can be derived compositionally from its ingredients:

yin + na + yang

COPULA CONDITIONAL EVEN

A new approach to universal free choice, parasitic on an existing universal/necessity operator via the conditional, enforced by the logical properties of motivated by its overt morphology (4). See also its further formalization in Erlewine 2020.

Extensions:

If this is really derived from the independent conventional semantics for the copula, conditional, and even, we might expect similar expressions in other languages.

Rahul Balusu has recently shown (2019, 2020) this to be true in a range of Dravidian languages!

For example, Telugu ai-naa = cop-even. If has three functions:

1. Ai-naa counterexpectational discourse particle
2. X ai-naa concessive scalar focus particle
3. wh ai-naa universal/existential free choice item

But there are subtle differences! For example, Telugu wh ai-naa also allows 3-FCI (‘somebody or other’) readings. See Balusu 2019, 2020.

Japanese demo has three functions:

1. Demo counterexpectational discourse particle
2. X demo concessive scalar focus particle / ‘for example’
3. wh demo universal free choice item

See the handout’s Appendix for some data and one particularly striking parallel between Tibetan yin.na’ang and Japanese demo.

! But there is a subtle difference! Demo has a ‘for example’ use (Watanabe 2013). See Appendix in handout.

A closing thought on constructional transparency...

A complication is that Japanese demo is not a synchronically productive combination of copula, conditional, and even.

- Hiraïwa and Nakanishi (to appear) propose that the Japanese surface form demo is a conventionalized contraction of dear-te-mo, which is transparently cop-cond-even. But the proposed contraction is not a productive process.

- The success of the decomposition for Tibetan yin.na’ang — from its ingredients, copula + conditional + even — is valuable for understanding this class of expressions, both synchronically productive and not:

 - We might find other cases where the morphology and semantics are quite transparent (Dravidian?)
 - and for others, it offers an explanation for why a language bundles such meanings together, even if its morphology is now calcified (Japanese).

 sungtesi Thank you!
Appendix: Japanese demo

Three uses:

(39) **Counterexpectational discourse particle ‘however’:** \(\equiv (1) \)

Tashi-wa se-ga takai. **Demo** atama-wa yoku-nai.
Tashi-top height-nom high demo head-top good-neg

‘Tashi’s tall. **However, [he] isn’t smart.’

(40) **Concessive scalar focus particle:** \(\equiv (2) \)

Context: Don’t worry, the test is easy.

[Hon-o [is-satsu / 3 san-satsu] _ **demo** yom-eba]
book-acc one-cl three-cl demo read-cond
shiken-ni gookaku su-ru (yo).
exam-dat pass do-nonpast yo
\(\equiv [\text {If [you] read even just one book}, \text {[you] will pass the exam.}’

(41) **Wt universal free choice item:** \(\equiv (11) \)

Context: Pema is very friendly.
Kanojo-wa [dare-to **demo**] hana-su.
she-top who-dat demo talk-nonpast

‘She talks to anyone.’
A fascinating parallel between Japanese and Tibetan *wh*-FCI:

(42) *Dou is manner ‘how’*:

Chibetto-ni *dou*
Tibet-dar how
ik-u-no?
goonpast-Q
‘How will you go to Tibet?’

(43) *Bo-rla* *gang,‘dra*
Tibet-dar how
‘gro-ya-yin?
goonpast-AUX
‘How will you go to Tibet?’

(44) *Dou-demo can’t be used for ‘any way’*:

*Dou-demo ik-u (yo).
how-demo go-nonpast yo
Intended: ≈ I will go however/in any way.’

(45) *Gang,‘dra yin,na‘ang*
how go-fut-AUX
‘gro-ya-yin.
go-fut-AUX
Intended: ≈ I will go however/in any way.’

(46) *But dou-demo can express strong indifference*:

Dou-demo ii (yo).
how-demo good yo
‘Anything is fine.’ (I don’t care
/ That doesn’t matter)

(47) *Gang,‘dra yin,na‘ang*
how go-fut-AUX
‘grig-gi-red.
 alright-impf-AUX
‘Anything is fine.’
(Speaker comment: ‘I don’t care.’)
However, Japanese *demo* as a focus particle has a ‘for example’ use that Tibetan *yin.na’ang* lacks:

(48) Teramura 1991 in Watanabe 2013: 207:

John-ni-*demo* kik-ou.
John-dat-*demo* ask-hort
‘Let’s ask John, for example.’

(49) bKra.shis-*yin.na’ang*-la
Tashi-*yin.na’ang*-dat
‘dri-go.
ask-hort
literally ‘Let’s ask *yin.na’ang* Tashi.’

(50) Watanabe 2013: 208:

Kaze-*demo* hii-ta-no?
cold-*demo* catch-past-Q
‘Did you catch a cold, for example?’

(51) Khyed.rang cham.pa
you cold
yin.na’ang brgyab-’dug-gas?
yin.na’ang build-aux-Q
literally ‘Did you catch *yin.na’ang* a cold?’

(52) Ocha-*demo* nomi-masu-ka?
tea-*demo* drink-polite-Q
‘Would you like to get tea, for example?’

(53) Khyed.rang cha *yin.na’ang*
you tea *yin.na’ang*
thung-ya-yin-pas?
dring-fut-aux-Q
literally ‘Will you drink *yin.na’ang* tea?’