Uses of Tibetan *yin.n’ang* ཡིན་ནའང་
Michael Yoshitaka Erlewine (mitcho), NUS
Singapore Summer Meeting, July 2019

1 Introducing Tibetan *yin.n’ang*

Tibetan *yin.n’ang* ཡིན་ནའང་ appears to have three distinct uses:

1. **Counterexpectational ‘but/however’**:
Khong gzugs.po ring.po ‘dug. *Yin.n’ang* spyang.po mi-’dug.
he body long aux *Yin.n’ang* clever neg-aux
‘He’s tall. **However,** he isn’t smart.’

2. **Wh free choice item (FCI):**
Context: Pema is very friendly.
Mo.rang [su *yin.n’ang]*=la skad.cha bshad-gi-red.
she who *Yin.n’ang*=DAT speech talk-impf-aux
‘She talks to anyone.’

3. **Concessive scalar particle (see e.g. Lahiri 2010; Crnič 2011a,b):**
Context: Don’t worry, the test is easy.
[Dep [gcig]*yin.n’ang* klog-na] yig.tshad mthar.’khyol-gi-red.
book one *Yin.n’ang* read-cond exam succeed-impf-aux
≈ ‘[You] will pass the exam [if [you] read **just at least** one book].’

yin.n’ang is also variably *yin.na.yang* ཡིན་ན་ཡང་ or *yin.n’i* ཡིན་འི་ and is morphologically clearly:

4. *yin* + *na* + *yang* > *yin.na.yang* > *yin.n’ang* > *yin.n’i* /yine/
copula conditional even

- Today, I document these uses of *yin.n’ang* from original fieldwork and propose a compositional semantics which derives these uses from the components in (4).
- I also extend this analysis to **Japanese demo**, which has the exact same range of uses and also historically derives from the ingredients in (4).

1 I thank Kunga Choedun, Pema Yudron, and Tenzin Kunsang for many hours of consultations, as well as Chris Davis, Hadas Kotek, and Elin McCready for comments and discussion.

2 This reflects the general reduction of ཤེང་<yang> even to ཤི།<y'i> /ye/, common in speech (Tournadre and Sangda Dorje 2003: 409).
2 Counterexpectational ‘but/however’

There are roughly three uses of English but:\footnote{There’s also exceptive but, which we leave aside.}

(5) Uses of English but (Toosarvandani 2014: 3):

a. Counterexpectational but: “p but q” $\sim p \Rightarrow \neg q$
 The player is tall, but agile.
 \sim (we expect that) if the player is tall, she is not agile.

b. Semantic opposition but:
 John is tall, but Bill is short.
 \sim (we expect that) if John is tall, Bill is not short.

c. Corrective but:
 Liz doesn’t dance, but sing.
 $\neg\sim$ (we expect that) if Liz doesn’t dance, she does not sing.

(6) Counterexpectation (or contrast) is required:

Kho kha.lag mang.po za-gi-red.
he food a.lot eat-impf-aux
‘He eats a lot of food.’

a. Yin.n’ang rgyags.pa chags-ma-red.
 Yin.n’ang fat become-impf-NEG-aux
 ‘But he doesn’t gain weight.’

b. # Yin.n’ang rgyags.pa chags-ma-red.
 Yin.n’ang fat become-impf-aux
 ‘But he gains weight.’

(7) Semantic opposition (not obviously counterexpectational) Yin.n’ang:

bsTan.dzin gzugs.po ring.po ’dug. Yin.n’ang bKra.shis chung-chung ’dug.
Tenzin body long aux Yin.n’ang Tashi small-red aux
‘Tenzin is tall. But Tashi is short.’

(8) But no corrective Yin.n’ang:

Khong gzugs.po ring.po mi-’dug Yin.n’ang chung-chung ’dug.
he body long neg-aux Yin.n’ang small-red aux
Intended: ‘He’s not tall, but short.’
Analysis

Suppose counterexpectational *yin.n’ang* takes an unpronounced propositional anaphor:

(9) \[\text{[[pro}_{=p}]_F \text{ yin-na}] = \text{yang } q \]
 \[\text{cop-cond EVEN}\]
 \[\text{Literal LF: EVEN (if it’s [p]_F, q)}\]

(10) Deriving counterexpectation:

a. The proposition \(p \) was asserted prior. \(\Rightarrow p \)

b. Let \(P \) be a set of relevant alternatives to \(p \) — propositions \(p' \) where the conditional “if \(p', q \)” is relevant to consider.

c. **EVEN** requires that the conditional “if \(p, q \)” be less likely than “if \(p', q \)” for all \(p' \in P \).

This scalar condition requires very low credence in “if \(p, q \)” which is supported by an expectation that “if \(p, \neg q \)” \(\sim \) we expect (if \(p, \not q \))

(In other words, **EVEN** is used to build a concessive (‘although/even though’) relation from a *causal* one, as is cross-linguistically common (König 1991: 82–83).)

d. Assuming that \(P \) exhausts all relevant possibilities — i.e. this is an “introduced” **EVEN** if conditional, in Bennett’s (1982) terms — the assertion of “**EVEN** if \([p]_F, q \)” will implicate the truth of the consequent \(q \) (von Fintel 1994: §5.3.3).

\(\sim q \)

e. Therefore, “\(p. \text{Yin.n’ang } q \)” \(\sim p, q, \) we expect (if \(p, \not q \))

(10) (I hope that we can reduce the scalar opposition use (7) to this same counterexpectational use.)

But a puzzle:

(11) The propositional anaphor for *yin.n’ang* can’t be overt: cf (1)

\(*\text{khong gzugs.po ring.po } \text{’dug. De } \text{yin.n’ang spyang.po mi-’dug. he body long aux that yin.n’ang clever neg-aux}\)

(12) *De* is used as a propositional anaphor:

\(\text{[khong gzug.po ring.po red] nga bsam-gi-’dug. bsTan.dzin=yang5 de bsam-gi-’dug. he body long aux 1sg think-impf-aux Tenzin=also that think-impf-aux ‘I think he’s tall. Tenzin also thinks so.’}\)

\(^5\text{yang is also } \text{‘also,’ in addition to scalar } \text{‘even’} \text{ (Erlewine and Kotek 2016).}\)
3 *Wh* free choice item

Free choice items are licensed in a range of modal/conditional and non-episodic (non-veridical; Giannakidou 2001) environments and lead to free choice inferences:

(13) \[f(\text{FCI}_x) \Rightarrow \text{for any choice of } x, f(x) \text{ is true} \]

(Kratzer and Shimoyama 2002’s “distribution requirement”; Giannakidou 2001’s “quasi-universal effect”)

(14) \[\text{Khong [kha.lag ga.re yin.n’ang] za-gi-red. / ...za-thub-gi-red.} \]

he food what YIN.N’ANG eat-IMPF-AUX eat-ABLE-IMPF-AUX

‘He (eats(habitual)/can eat) any food.’

(15) Puzzle: FCIs can’t be built with ‘which’

(16) a. Literal (2): She talks to [even if it’s who]

b. LF: [even if it’s who], she talks to \(\text{them}_i \) \(\Rightarrow \) \(\text{even(if it’s who, she talks to } \text{them}_i \)
Analysis

Following the approach developed in my ongoing work...\(^7\)

(17) Computing the wh free choice item example (2):

a. Wh-words have an alternative set ranging over its domain but no ordinary value (Ramchand 1997; Beck 2006; Kotek 2014):

\[
[su/who]^0 \text{ undefined} \quad [su/who]^\text{alt} = \{x : x \text{ animate}\}
\]

b. Even requires its complement to have a defined ordinary value (the prejacent). But the ordinary value of the sister of even in (16b) — which contains `who` — is undefined.

c. To fix this problem, I posit the following covert operator \(\exists:8\)

\[
[\exists \alpha]^0 = \sqrt{[\alpha]^\text{alt}} \quad [\exists \alpha]^\text{alt} = [\alpha]^\text{alt}
\]

d. Complete LF for (2): even\(_\alpha\) if \(\exists[\text{they' re who}],\) she talks(HABITUAL) to them\(_i\)]

\[
[\alpha]^0 = \land \text{if it's someone}\(_i\), she talks to them}_i \\
[\alpha]^\text{alt} = \{\land \text{if it's x}_i, she talks to them}_i : x \text{ human}\}
\]

e. even\(_\alpha\) asserts [\alpha]^0; she talks to everyone (as long as they exist).

f. Notice that the prejacent [\alpha]^0 asymmetrically entails every proposition in [\alpha]^\text{alt}. The presupposition of even is thus satisfied: the prejacent is the least likely alternative.

g. In addition, I propose that the assertion of [\alpha]^0 instead of a more specific alternative in [\alpha]^\text{alt} yields a conversational implicature that `someone` in the conditional clause can be verified by multiple (all?) individuals. This derives the free choice inference.

Maybe this approach can derive FCI distribution?

(18) Deriving the ungrammaticality (?) of wh yin.n’ang FCI in episodic contexts:

a. Hypothetical structure: He’s eating [even if it’s what] right now. Missing this data!

b. Intended: *Mary’s eating anything right now.*

c. LF: even\(_\alpha\) if \(\exists[\text{it’s what}_i],\) he’s eating \(i_h\) right now]

d. The intuition: In this episodic situation, either the speaker knows what specifically is being eaten right now (maybe multiple things) — and therefore should be able to say a more specific alternative in [\alpha]^\text{alt}, contra (17g) — or they can’t be certain (and therefore shouldn’t say, by Quality) that everything is being eaten right now ([\alpha]^0).\(^9\)

\(^7\)In the work I’m developing, the obligatory use of even here is also explained. But see (20) below.

\(^8\)Although the effect of the ordinary value here is that of the existential closure/disjunction operator as in Kratzer and Shimoyama 2002 and Alonso-Ovalle 2006, these previous works work in a one-dimensional Hamblin semantics. The \(\exists\) operator here defines an ordinary value but does not touch the focus semantic value.

\(^9\)This might also help explain “subtrigging” — the exceptional licensing of FCI when their domain is further restricted, for example with a relative clause. Making the domain of alternatives much smaller could help avoid
There is also a *wh* conditional with “unconditional” semantics, which shows that a logic like (17) must be generally productive:

\[(19) \quad \text{སུ་སླེབས་ན་འགྲིག་གི་རེད་} \]
\[
[\text{Su slebs-na}=\text{yang} \quad \text{‘grig-gi-red.} \\
\text{who come-cond=even alright-impf-aux}]
\]

Translated from: ‘Anyone can come.’ literally ‘It’s alright even if who comes.’

But here, apparently the *yang even* is optional...

\[(20) \quad \text{སུ་སླེབས་ན་་འགྲིག་གི་རེད་} \]
\[
[\text{Su slebs-na} \quad \text{‘grig-gi-red.} \\
\text{who come-cond alright-impf-aux}]
\]

‘Anyone can come.’

4 Concessive scalar particle

Crnič 2011b: 5:

“[Concessive scalar particles are] licensed in two types of environments: DE and modal environments. It is glossed with *even* in DE environments and under existential modals; it is glossed with *at least* in imperatives, under universal modals and under attitude predicates. The associate of [a CSP] is the lowest element on the pragmatic scale.”

\[(21) \quad \text{Yin.n’ang licensed by negation:}^{10} \]

a. \[
\text{bKra.shis ang [gsum]e-pa yin.n’i \# three-rd YIN.N’ANG receive-NEG-aux} \\
Tashi \quad \text{‘He didn’t even get [third]F place.’}
\]

b. *\[
\text{bKra.shis ang [gsum]e-pa yin.n’i \# three-rd YIN.N’ANG receive-aux} \\
Tashi \quad \text{literally ‘He got YIN.N’ANG [third]F place.’}
\]

these issues which block the use of a FCI.

\[10\]It is known that the licensing of CSPs with clause-mate negation is subject to cross-linguistic variation. Spanish *siquiera* allows it (Alonso-Ovalle 2016: 186) but Slovenian *magari* does not, although it can be licensed by non-clause-mate negation (Crnič 2011b: 4). (I think Japanese *demo* cannot.)
22) **Spanish aunque sea in a conditional** (Lahiri 2010):

Si lees **aunque sea** UN/*CINCO libro, vas **a aprobar**.

If you read **aunque sea** one/*five book, you’re going to pass

Tibetan *yin.n’ang* in a similar conditional environment must associate with a weak element:

(23) **Yin.n’ang** licensed by a conditional, with ‘at least’ interpretation:

 book one *YIN.N’ANG* read-cond exam succeed-impf-aux

 ≈ ‘[You] will pass the exam [if [you] read at least one book].’

 book three *YIN.N’ANG* read-cond exam succeed-impf-aux

 Intended: ≈ ‘[You] will pass the exam [if [you] read at least three books].’

(24) **Yin.n’ang** in an imperative, with ‘at least’ interpretation:

Kha.lag [tis] *yin.n’i* za-(dang)!

food a little *YIN.N’ANG* eat-imp

≈ ‘Eat at least a little food!’

CSPs are also supposed to be licensed under bouletic embeddings like *want*, yielding ‘at least’ translations (25), but I wasn’t able to reproduce this.

(25) **Slovenian magari** licensed under ‘want/wish that’ (Crnič 2011b: 5):

a. Janez *si* želi, da bi Peter osvojil magari BRONASTO medaljo.

 John self want that AUX Peter win MAGARI bronze medal

 ‘John wishes that Peter would win at least a bronze medal.’

b. *Janez je* misil, da je Peter osvojil magari BRONASTO medaljo.

 John AUX think that AUX Peter won MAGARI bronze medal

 Intended: ‘John thought that Peter won at least a bronze medal.’

(26) **Yin.n’ang** not licensed by ‘hope’ (N):

bKra.shis ang [gsum]’i len-pa *yin.n’i* re.ba yod.

Tashi # three-rd *YIN.N’ANG* receive-nml-gen hope have

‘I hope that Tashi gets at least third place.’ literally ‘I have hope that...’

...but maybe (26) was a bad set up because re.ba ‘hope’ here is a noun.
Analysis

(27) **Licensing by negation with ‘even’ reading (21):**

This follows the general logic of weak elements associating with even to form NPIs (Lahiri 1998; see also Lee and Horn 1995). We consider only first, second, third places here.

a. **LF for (21a):** even if it’s third place, Tashi didn’t get it

\[
[a]^0 = \neg \text{if it’s third place, Tashi didn’t get it}
\]

\[
[a]^\text{alt} = \{\neg \text{if it’s } n\text{-th place, Tashi didn’t get it : } n \in \{1, 2, 3\}\}
\]

Assuming getting first place is less likely — or more noteworthy (Herburger 2000) — than second, than third, not getting third place will be the least likely, satisfying even.

b. **LF for (21a):** even if it’s third place, Tashi got it

\[
[a]^0 = \neg \text{if it's third place, Tashi didn't get it}
\]

\[
[a]^\text{alt} = \{\neg \text{if it’s } n\text{-th place, Tashi got it : } n \in \{1, 2, 3\}\}
\]

Here the prejacent is the most likely / least noteworthy, so even is not satisfied.

(28) **Licensing in a conditional and associating with a weak element (3):**

a. **LF for (3):** even if it’s one book, [if you read it, you will pass the exam]

\[
[a]^0 = \neg \text{if it’s one book, if you read it, you will pass the exam}
\]

\[
[a]^\text{alt} = \{\neg \text{if it’s } n\text{ books, if you read them, you will pass the exam} : n \geq 1\}
\]

On the ‘at least’ interpretation of the numeral, \([a]^0\) asymmetrically entails all other alternatives in \([a]^\text{alt}\) and is thus the least likely, satisfying even.

This necessitates the ‘at least’ interpretation of the numeral and blocks the exact reading.

b. **LF for (23b):** even if it’s three books, [if you read it, you will pass the exam]

\[
[a]^0 = \neg \text{if it’s three books, if you read it, you will pass the exam}
\]

\[
[a]^\text{alt} = \{\neg \text{if it’s } n\text{ books, if you read them, you will pass the exam} : n \geq 1\}
\]

\([a]^0\) is not the strongest/least likely alternative in \([a]^\text{alt}\) and so even is not satisfied.

(29) **Licensing yin.n’ung in an imperative (24):**

a. **LF for (24):** even if it’s a little food, you eat it

\[\text{Imp}\] represents the imperative speech act in (29).

b. As imperatives don’t have truth conditions (pace Kaufmann 2012), we can’t order them by likelihood or entailment. So here I adopt a noteworthiness scale (Herburger 2000).

c. In a context where a stronger request — e.g. \text{Imp}(if it’s a lot of food, you eat it) — is also appropriate, the speaker’s choice to make the weaker request with ‘little’ is noteworthy, satisfying even.

d. This derives the ‘at least’ flavor: Alternative imperatives with higher values would also be appropriate.

\[\text{The analysis here is similar to that in Lahiri 2010. Notably, Lahiri 2010 notes that Spanish aunque sea appears to be even + conditional + copula, and the Greek CSP esto ke is also even + conditional.}\]
And now for something completely different (?)...

5 Japanese demo

See if this looks familiar:

(30) **Counterexpectational ‘but/however’**:
Tashi-wa se-ga takai. (Sore) demo atama-wa yoku-nai.
Tashi-top height-nom high that demo head-top good-NEG
‘Tashi’s tall. But [he] isn’t smart.’

(31) **Wh free choice item**:
Context: Pema is very friendly.
Kanojo-wa [dare-to demo] hana-su.
she-top who-dat demo talk-nonpast
‘She talks to anyone.’

(32) **Concessive scalar particle**:
Context: Don’t worry, the test is easy.
[Hon-o [is-satsu / ?san-satsu] demo yom-eba] shiken-ni gookaku su-ru
book-acc one-cl three-cl demo read-cond exam-dat pass do-nonpast
(yo).
yo
≈ ‘[You] will pass the exam [if you] read **just at least** one book.’

► Japanese demo is Tibetan yin.n’ang! I propose that the same analysis can apply for each of these uses.

Nakanishi 2006: 141:

“-Demo can be morphologically decomposed into the copular verb -de followed by -mo [even]. However, it is not clear whether this decomposition is necessary. Indeed, -demo is often treated as a single lexical item corresponding to even…”

- Onodera 2004 however argues that Japanese demo historically derives from the V-te (causal/asymmetric conjunction) + mo (even) construction, described by Yamaguchi 1989 as a concessive conditional.

► The success of the decomposition for Tibetan yin.n’ang — as copula + conditional + even — in turn motivates a similar decompositional approach for Japanese demo as well.

(33) **Semantic opposition demo**:
Tenjin-wa se-ga takai. Demo Tashi-wa se-ga hikui.
Tenzin-top height-nom high demo Tashi-top height-nom low
‘Tenzin is tall. But Tashi is short.’
But no corrective demo:

\[\text{Kare-wa se-ga/wa takaku-nai. Demo hikui.} \]

\[\text{he-top height-nom/top high demo low} \]

‘He’s not tall, but short.’

Wh demo FCI:

\[\text{Kare-wa tabemono-o nan-demo tabe-ru. / ...tabe-rare-ru.} \]

\[\text{he-top food-acc what-demo eat-nonpast eat-able-nonpast} \]

‘He {eats(habitual) / can eat} any food.’

I propose that the copular clause inside demo is in fact a reduced cleft. Cleft pivots in Japanese can include case particles:

LF for (31): even(if it’s [who-dat] [that she talks to], she talks [to] them_1)

Another fascinating FCI parallel:

Dou is manner ‘how’:

\[\text{Chibetto-ni dou ik-u-no?} \]

\[\text{Tibet-dat how go-nonpast-Q} \]

‘How will you go to Tibet?’

Dou-demo can’t be used for ‘any way’:

*[\text{Dou-demo ik-u (yo).}] \]

\[\text{how-demo go-nonpast yo} \]

Int.: \(\approx \) ‘I will go however/in any way.’

Instead, dou-demo expresses strong indifference:

\[\text{Dou-demo ii (yo).} \]

\[\text{how-demo good yo} \]

‘Anything is fine.’ (I don’t care / That doesn’t matter)

10
Japanese also has a _wh_ conditional with “unconditional” semantics:

(42) \[[\text{Dare-ga ki-te}]=^\text{*(mo)} \]
\[
\text{who-NOM come-TE=EVEN good}
\]

\[\text{‘Anyone can come.’} \]

(literally ‘It’s alright even if who comes.’)

(43) _Demo_ in an imperative, with ‘at least’ interpretation:

\[\text{[Sukoshi]}_F \text{ demo } \text{tabe-ro/nasai!} \]
\[\text{a little } \text{YIN.N’ANG eat-IMP} \]

\[\approx \text{‘Eat at least a little food!’} \]

However! The use of Japanese _demo_ as a concessive scalar particle appears to be slightly broader than Tibetan _yin.n’ang_:

(44) Teramura 1991 in Watanabe 2013: 207:

John-ni-_demo_ kik-ou.

John-DAT-_demo_ ask-let’s

‘Let’s ask John, for example.’

(45) Watanabe 2013: 208:

Kaze-_demo_ hii-ta-no?

cold-_demo_ catch-PAST-Q

‘Did you catch a cold, for example?’

(46) Ocha-_demo_ nomi-masu-ka?

tea-_demo_ drink-POLITE-Q

‘Would you like to get tea, for example?’

(47) *bKra.shis-_yin.n’ang-la ‘dri-go.

Tashi-YIN.N’ANG-DAT ask-let’s

literally ‘Let’s ask _yin.n’ang_ Tashi.’

(48) *Khyed.rang cham.pa _yin.n’ang bryab-’dug-gas?

you cold YIN.N’ANG build-AUX-Q

lit. ‘Did you catch _yin.n’ang_ a cold?’

(49) *Khyed.rang cha _yin.n’ang’ thung-ya-yin-pas?

you tea YIN.N’ANG dring-fut-AUX-Q

lit. ‘Will you drink _yin.n’ang_ tea?’

But notice that all of these examples involve focus associates that are not

- Tibetan _yin.n’ang_’s alternatives must be ordered only by likelihood/entailment in the CSP use, without contextual information. Therefore _yin.n’ang_ CSP can only associate with weak elements on a scale such as ‘one,’ but not contextually ordered alternatives.

(How to get the current analysis based on _even_ to extend to these Japanese ‘for example’ cases is a puzzle for future work...)
References

Lahiri, Utpal. 2010. Some *even’s are even (if) ... only*: The concessive “*even*” in Spanish. Manuscript.