Counterexpectation, concession, and free choice in Tibetan and beyond

Michael Yoshitaka Erlewine, mitcho@nus.edu.sg
National University of Singapore
Linguistic Society of America, January 2020

1 Introducing Tibetan yin.n’ang

Tibetan yin.n’ang ཡིན་འང་ appears to have three distinct uses:

1. Counterexpectational discourse particle ‘however’:

 bKra.shis dge-rchan: yin.n’ang spyang.po mi-’dug.
 Tashi teacher COP yin.n’ang clever NEG-AUX
 ‘Tashi is a teacher. However, he isn’t smart.’

2. Concessive scalar focus particle:

 book one yin.n’ang read-COND exam succeed-IMPF-AUX
 ≥ ‘[If you] read even just one book, [you] will pass the exam.’

3. Wh universal free choice item (V-FCI):

 Khong [kha.lag ga.re yin.n’ang] za-gi-red. / ...za-thub-gi-red.
 he food a.lot eat-IMPF-AUX eat-ABLE-IMPF-AUX
 ‘He {eats (habitual)/can eat} any food.’

Yin.n’ang is also variably yin.na.yang ཡིན་ན་ཡང་ or yin.n’i དེ་ཡིན་འང་ ¹ and is morphologically clearly:

(4) ཡིན་ + na + yang = yin.na.yang > yin.n’ang > yin.n’i
 COPULA COND EVEN
 /yine/
Roughly, then, yin.n’ang = even-if-it’s.

Today:

- I document these uses of Tibetan yin.n’ang from original fieldwork and develop a compositional semantics which derives these uses from (4).
- I highlight combinations of the same ingredients with the same range of uses in Dravidian, from Rahul Balusu’s recent work, and motivate an extension of the analysis to Japanese demo.

2 Counterexpectational discourse particle

- The utterance “Yin.n’ang q” refers to a prior proposition p and (a) requires an expectation that “if p, unlikely q” and (b) commits the speaker to q.

(5) Counterexpectation is required:

Kho kha.lag mang.po za-gi-red.
he food a lot eat-IMPF-AUX
Yin.n’ang rgyags.pa chags-gi-ma-#(ma)-red.
yin.n’ang fat become-IMPF-NEG-AUX
‘He eats a lot of food. However, he doesn’t gain weight.’

¹This reflects the general reduction of ལེ་ ཡིན་ + na + yang ལེ་ ཡིན་་ལེ་ ཡིན་འང་ ལེ་ཡིན་འང་ ལེ་ ཡིན་‘yin’ to /ye/, common in speech (Tournadre and Sangda Dorje 2003: 409). Goldstein 2001 lists all three forms (p. 1000), but identifying ཡིན་འང་ yin.n’ang as the canonical form. I follow this convention here.

All data is from my fieldwork in Dharamsala, India, summers 2018 and 2019. Abbreviations: aux = auxiliary, cop = copula, imf = imperative, impf = imperfective, cond = conditional, neg = negation; dat = dative, erg = ergative; ord = ordinal. The Wylie romanization is employed here, with periods indicating syllable boundaries where there is no morpheme boundary.
Analysis

Yin.\textit{n’ang} takes an unpronounced propositional anaphor:

\[(\text{[pro} = p]\text{_yin-na]) = \text{yang q}\]

\text{COP_COND _EVEN}

\text{Literal LF: EVEN (if it’s \text{[p]}_p, q)}

(7) Deriving counterexpectation:

a. Let \(P\) be a set of relevant alternatives to \(p\) — propositions \(p’\) where the conditional “if \(p’, q\)” is relevant to consider.

b. \text{EVEN} requires that the conditional “if \(p, q\)” be less likely than “if \(p’, q\)” for all \(p’ \in P\). \text{(Horn 1969; see also Bennett 1982, von Fintel 1994)}

c. This scalar condition requires very low credence in “if \(p, q\),” which is incompatible with an expectation that “if \(p\), likely \(q\).” We therefore reason that “if \(p\), unlikely \(q\).”

In other words, \text{EVEN} is used to build a \textit{concessive} (‘although/\textit{even _ though}’) relation from a \textit{causal} one, as is cross-linguistically common (König 1991: 82–83). See also Ippolito 2004 for related discussion of the analysis of concessive \textit{still}.

(8) Deriving the commitment to \(q\): (via commitment to \(p\))

a. The proposition \(p\) was asserted prior by the same speaker or by another speaker and not denied, committing the speaker to \(p\).

b. The speaker asserts “if \(p\), \(q\).”

c. By Modus Ponens, the speaker is committed to \(q\).

(9) Deriving the commitment to \(q\): (without commitment to \(p\))

Assuming that \(P\) in (7) exhausts all relevant possibilities, this is what Bennett (1982) calls an “introduced” \textit{even _ if} conditional. In such cases, the assertion “\text{EVEN} if \text{[p]}_p, q” implicates the truth of the consequent \(q\). See von Fintel 1994: \$5.3.3 for discussion.

3 On \textit{yin.n’ang} in argument position

Taking the morphology of \textit{yin.n’ang} at face value — \textit{copula} + \textit{conditional} + \textit{even} (4) — \textit{yin.n’ang} is a conditional clause (with \textit{even}).

\textbf{\textgreater} But in \textit{yin.n’ang}’s focus particle and \textit{wh-FCI} uses, \textit{X/wh=_yin.n’ang} is in an argument position! This is especially problematic in examples such as (10), where the whole \text{=_yin.n’ang} structure takes dative case:

(10) \textit{Wh'=_yin.n’ang with dative case:}

\textbf{Context:} Pema is very friendly.

\textit{Mo.rang [su _ yin.n’ang]=la skad.cha bshad-gi-red.} \textit{she who YIN.N’ANG DAT speech talk-IMPF-AUX}

‘She talks (habitual) to \textit{anyone}.’

We can think of \textit{X/wh=_yin.n’ang} as a clausal structure in an argument position which describes that argument; i.e. as a \textit{head-internal relative} or \textit{amalgam} (Lakoff 1974; also Kluck 2011):

(11) John is going to \underline{I think it’s Chicago on Saturday}. \textit{(Lakoff 1974: 324)}

...but many approaches to head-internal relatives and amalgams will not apply here, as the embedded clause is a \textit{conditional} clause.

\textbf{\textgreater} I propose to adopt the Shimoyama 1999 anaphora approach for (Japanese) head-internal relatives: the clause is interpreted as adjoined to the main clause at LF, with its surface position interpreted as a pronoun.

(12) a. \underline{Literal (10):} She talks to \text{[even if it’s who]} \Rightarrow

\text{b. LF: [even if it’s who], she talks to \textit{them}, \Rightarrow \text{EVEN [if it’s who, she talks to \textit{them}]} \Rightarrow}

\text{2Tibetan also generally has head-internal relatives (DeLancey 1999, Erlewine 2019a).}

\text{3Rahul Balusu (p.c.) observes that Hirsch 2016 seems to have independently proposed an analysis much like (12) for the interpretation of English \textit{ever} free relatives.}
4 Concessive scalar focus particle

(13) Spanish *aunque sea* in a conditional (Lahiri 2010):

Si lees *aunque sea* UN libro, vas a aprobar.

if you read *aunque sea* one book, you’ll pass

≈ ‘If you read even just one book, you’ll pass.’

Concessive scalar particles...

- Alonso-Ovalle (2016: 185): “trigger a characteristic interpretation: they convey a strengthening effect in downward entailing environments, a ‘settle for less’ interpretation in modal contexts...” and

(14) *X yin.n’ang* licensed by a conditional:

\[
\text{Dep} \ [\text{[geg/\#gsum]f yin.n’ang klog-na] yig.tshad mthar.’khyol-gi-red.} \\
\text{book three/#three \ YIN.N’ANG \ read-cond exam \ succeed-IMPF-AUX} \\
\approx \text{’[If you] read even just one/#three book(s), [you] will pass the exam.’}
\]

(15) *X yin.n’ang* licensed by negation:

bKra.shis ang \ [\text{[gsum]}f-pa yin.n’i len-‘(mi)-’dug. \\
\text{Tashi number three-ORD YIN.N’ANG receive-NEG-AUX}

‘He didn’t even get [third]F place.’

(16) *X yin.n’ang* licensed in an imperative:

Kha.lag \ [\text{[tis]}f yin.n’i za-(dang)! \\
\text{food a little YIN.N’ANG eat-IMP}

≈ ‘Eat at least a little food!’

Analysis, in the spirit of Lahiri 20104

(17) Licensing in a conditional (14):

a. \(\text{LF: \ even \ } [\alpha \ \text{if it’s [one/three]}_F \ \text{book,} \\
\text{if you read it, you will pass the exam}] \)

b. \(\lbrack \alpha \rbrack_{\text{alt}} = \begin{cases} \\
\wedge \text{if it’s } n \ \text{books, [if you read them, you will pass the exam]} : n \geq 1 \end{cases} \)

c. With a weak element, ‘one’:

\(\lbrack \alpha \rbrack^0 = \wedge \text{if it’s one book, [if you read it, you will pass the exam]} \)

The prejacent \(\lbrack \alpha \rbrack^0\) is the least likely within \(\lbrack \alpha \rbrack_{\text{alt}}\), satisfying even.

d. With a stronger element, ‘three’:

\(\lbrack \alpha \rbrack^0 = \wedge \text{if it’s three books, [if you read it, you will pass the exam]} \)

\(\lbrack \alpha \rbrack^0\) is not the least likely alternative and so even is felicitous.

(18) Licensing by negation with ‘even’ reading (15):

Consider only first, second, third places here.

a. \(\text{LF: \ even \ } [\alpha \ \text{if it’s [third]}_F \ \text{place, Tashi didn’t get it,} \)

b. \(\lbrack \alpha \rbrack^0 = \wedge \text{if it’s third place, Tashi didn’t get it,} \\
\lbrack \alpha \rbrack_{\text{alt}} = \begin{cases} \\
\wedge \text{if it’s } n \text{-th place, Tashi didn’t get it: } n \in \{1, 2, 3\} \end{cases} \)

Assuming getting first place is less likely — or more noteworthy (Herburger 2000) — than second, etc., not getting third place will be the least likely, satisfying even.

This reasoning relies on the negation to reverse likelihood relations, and thus follows the general logic of weak elements associating with even to form NPIs (Lahiri 1998; see also Lee and Horn 1995).

4Lahiri 2010 discusses the distribution and interpretation of Spanish *aunque sea*, which appears to be even if + (subjunctive) copula, and discusses possible compositional accounts. He also relates this to the Greek concessive scalar *esto ke*, which is also even + if (Giannakidou 2007).
5 Wh universal free choice item

Universal free choice items (∀-FCIs) are licensed in a range of modal/conditional and non-episodic (non-veridical; Giannakidou 2001) environments and lead to universal free choice inferences:

(20) \(f(FCI_w) \Rightarrow \) for any choice of \(x \), \(f(x) \) is true

(Giannakidou 2001’s “quasi-universal effect”; Kratzer and Shimoyama 2002’s “distribution requirement”)

Analysis

(21) Computing the \(wh \) ∀-FCI in (10):

a. Literal (10): She talks to [even if it’s who] \(\Rightarrow \)

b. LF: even \([_o \text{ if it}^*_w \text{’s who, she talks to them}^*_w]\)

I follow the approach to non-interrogative \(wh \) interpretation that I develop in my ongoing work (Erlewine 2019b)...

c. \(Wh \)-words have an alternative set ranging over its domain but no ordinary value (Ramchand 1997, Beck 2006, Kotek 2014):

\[
[su/who]^{o} \text{ undefined} \quad [su/who]^{alt} = \{x : x \text{ animate}\}
\]

d. \(even \) requires its complement to have a defined ordinary value (the prejacent). But the ordinary value of the sister of \(even \) in (12b) — containing ‘who’ — is undefined.

e. To fix this problem, I use the following covert \(\exists^5 \)

\[
[\exists \alpha]^{o} = \bigvee[\alpha]^{alt} \quad [\exists \alpha]^{alt} = [\alpha]^{alt}
\]

f. Complete LF: even \([_o \text{ if } \exists[\text{it}^*_w \text{’s who], she talks to them}^*_w]\]

g. \([\alpha]^o = ^\wedge \text{if it}^*_w \text{’s someone, she talks(habitual) to them}^*_w \)

\([\alpha]^{alt} = \{^\wedge \text{if it}^*_w \text{’s } x, \text{ she talks(habitual) to them}^*_w : x \text{ human}\} \)

h. The conditional restricts the domain of a modal/temporal quantifier (Lewis 1975, Kratzer 1979, 1986, von Fintel 1994):

\(\forall \) appropriate situations/times \(s \) and assignments \(g, \)

where \(g(7) \) exists and is human in \(s \), she talks to \(g(7) \) in \(s \)

i. \([\alpha]^{o} = ^\forall s, g[g(7) \text{ defined, human in } s \rightarrow \text{she talks to } g(7) \text{ in } s] \)

\([\alpha]^{alt} = \{^\forall s, g[g(7) = x \rightarrow \text{she talks to } g(7) \text{ in } s] : x \text{ human}\} \)

\([\alpha]^{o} \) asymmetrically entails every alternative in \([\alpha]^{alt} \).

The presupposition of \(even \) is thus satisfied: the prejacent is the least likely alternative.

► The universal force of ∀-FCIs comes from the universal modal/temporal quantification — here, habitual — which is restricted by the conditional!

5 Although the effect of the ordinary value here is that of the existential closure/disjunction operator as in Kratzer and Shimoyama 2002 and Alonso-Ovalle 2006; these previous works work in a one-dimensional Hamblin semantics. The \(\exists \) operator here defines an ordinary value but does not touch the focus semantic value. As it turns out, this feature is important for modeling the interaction of many non-interrogative \(wh \) with focus particles. See Erlewine 2019b.
(22) But what if the conditional restricts a possibility modal?
 a. \(\exists \) accessible \(w \) and assignment \(g \), where \(g(7) \) exists and is human in \(w \), she talks to \(g(7) \) in \(w \)
 b. \([\alpha]^{\circ} = \{^w \exists w, g(g(7)) \text{ defined, human in } w \rightarrow \text{ she talks to } g(7) \text{ in } w \} \)
 \([\alpha]^{\text{alt}} = \{^w \exists w, g(g(7)) = x \rightarrow \text{ she talks to } g(7) \text{ in } w : x \text{ human} \} \)

But here, the prejacent \([\alpha]^{\circ} \) is weaker than each of the alternatives in \([\alpha]^{\text{alt}} \). The prejacent cannot be less likely than its alternatives, so \textit{even} is infelicitous!

\(\rightarrow \) The semantics of \textit{even} ensures that \(\text{wh}=\text{yin.n’ang} \) (\(\approx \text{even if it’s someone} \)) conditionals can only restrict universal modal/temporal operators!

(23) \(\forall \text{-FCI with possibility modal in (3)} \):
 a. Literal (3): He can eat \[\text{even if the food is what} \]
 b. If the food, exists, he \textbf{can eat} \(t \) \[\times \text{even} \]
 c. If the food, exists, \textbf{must} \([\text{he can eat} \ t \] \[\text{\textcircled{EVEN}} \]

\(\Rightarrow \forall \text{-FCI} > \text{can} \)

(24) \textit{Wh=\text{yin.n’ang} is ungrammatical in episodic descriptions:}

Khong da.lat [kha.lag ga.re \textit{yin.n’ang} za-bzhin-’dug.
he now food what \textit{yin.n’ang} eat-PROG-AUX

Intended: \(\approx \) ‘He is/must be eating \textbf{any} food right now.’

(25) \(\forall \) epistemically accessible \(w \) and assignments \(g \), where \(g(3) \) defined and food in \(w \), he is eating \(g(3) \) in \(w \)

I am exploring two possibilities for the ungrammaticality of (24):

a. (24) is blocked by a simpler universal quantifier expression.

b. These conditionals contain specification copulas which are interpreted as exhaustive (see e.g. Mikkelsen 2005, Romero 2005), leading to contradictions. See also Menéndez-Benito 2010.

6 Conclusion

tib\textit{en yin.n’ang} has three functions:

1. \textit{yin.n’ang} counterexpectational discourse particle
2. \textit{x yin.n’ang} concessive scalar focus particle
3. \textit{wh yin.n’ang} universal free choice item

\textbf{\(\rightarrow \) All three uses can be derived compositionally from its ingredients:}

(4) \(\text{\textit{yin} + \text{na} + \text{yang}} \)
\textit{copula conditional even}

\textbf{\(\rightarrow \) A new approach to universal free choice}, parasitic on an existing universal/necessity operator via the conditional, enforced by the logical properties of \textit{even}, motivated by its overt morphology (4).

\textbf{Extensions:}

\(\rightarrow \) If this is really derived from the independent conventional semantics for the copula, conditional, and \textit{even}, we might expect similar expressions in other languages.

Rahul Balusu has recently shown (2019b, 2019a) this to be true in a range of Dravidian languages!

For example, Telugu \textit{ai-naa = cop-even.if} has three functions:

1. \textit{Ai-naa} counterexpectational discourse particle
2. \textit{x ai-naa} concessive scalar focus particle
3. \textit{wh ai-naa} universal/existential free choice item

\(! \) But there are subtle differences! For example, Telugu \textit{wh ai-naa} also allows \(\exists \text{-FCI} (‘\text{somebody or other}’) \) readings. See Balusu 2019a,b.
Japanese *demo* has three functions:

1. **Demo** counterexpectational discourse particle
2. **X demo** concessive scalar focus particle / *for example*
3. **wh demo** universal free choice item

See the Appendix for some data and one particularly striking parallel between Tibetan *yin. n’ang* and Japanese *demo*.

! But there is a subtle difference! *Demo* has a *‘for example’* use (Watanabe 2013). See Appendix.

A complication is that *demo* is not a synchronically productive combination of copula, conditional, and *even*.

- Nakanishi (2006: 141): “*-Demo can be morphologically decomposed into the copular verb -de followed by -mo [even]. However, it is not clear whether this decomposition is necessary. Indeed, -*demo is often treated as a single lexical item corresponding to even...”
- Onodera 2004 however argues that Japanese *demo* historically derives from the V-te (causal/ asymmetric conjunction) + *mo (even)* construction, described by Yamaguchi 1989 as a concessive conditional.

- The success of the decomposition for Tibetan *yin. n’ang* — as copula + conditional + *even* — in turn motivates a similar decompositional approach for Japanese *demo* as well.

References

Balusu, Rahul. 2019b. Unifying NPIs, FCIs, and unconditional in Dravidian. Presented at NELS 50.

Thank you!

Slides and handout: https://mitcho.com/research/talk-lsa2020.html
Lahiri, Utpal. 2010. Some *even’s are *even (if) ... only: The concessive “even” in Spanish. Manuscript.

Appendix: Japanese demo

Three uses:

(26) **Counterexpectational discourse particle ‘however’:**

\begin{align*}
\text{Tashi-wa & se-ga takai. Demo atama-wa yoku-nai.} \\
\text{Tashi-top height-NOM high DEMO head-TOP good-NEG} \\
\text{‘Tashi’s tall. However, [he] isn’t smart.’} \\
\end{align*}

(27) **Concessive scalar focus particle:**

\begin{align*}
\text{Context: Don’t worry, the test is easy.} \\
&\text{[Hon-o [is-satsu / ??san-satsu]_f demo yom-eba]} \\
&\text{book-ACC one-CL three-CL DEMO read-COND} \\
&\text{shiken-ni gookaku su-ru (yo).} \\
&\text{exam-DAT pass do-NONPAST yo} \\
&\approx \text{‘If [you] read even just one book}, [you] \text{will pass the exam.’} \\
\end{align*}

(28) **Wh universal free choice item:**

\begin{align*}
\text{Context: Pema is very friendly.} \\
&\text{Kanojo-wa [dare-to demo] hana-su.} \\
&\text{she-TOP who-DAT DEMO talk-NONPAST} \\
&\approx \text{‘She talks to anyone.’} \\
\end{align*}
A fascinating parallel between Japanese and Tibetan wh-FCI:

(29) **Dou** is manner ‘how’:
Chibetto-ni dou
Tibet-DAT how
ik-u-no?
go-NONPAST-Q
‘How will you go to Tibet?’

(30) Bod-la gang’dra
Tibet-DAT how
’gro-ya-yin?
go-FUT-AUX
‘How will you go to Tibet?’

(31) **Dou-demo** can’t be used for ‘any way’:
Dou-demo ik-u (yo).
how-Demo go-NONPAST yo
Intended: ≈ ‘I will go however/in any way.’

(32) *Gang.’dra yin.n’ang
how go-FUT-AUX
’gro-ya-yin.
go-FUT-AUX
Intended: ≈ ‘I will go however/in any way.’

(33) But **dou-demo** can express strong indifference:
Dou-demo ii (yo).
how-Demo good yo
‘Anything is fine.’ (I don’t care / That doesn’t matter)

(34) ’gro-ya-yin.
grig-gi-red.
’grig-gi-red.
(Speaker comment: ‘I don’t care.’)

However, Japanese *demo* as a focus particle has a ‘for example’ use that Tibetan yin.n’ang lacks:

(35) Teramura 1991 in Watanabe 2013: 207:
John-ni-demo kik-ou.
John-DAT-demo ask-let’s
‘Let’s ask John, for example.’

(37) Watanabe 2013: 208:
Kaze-demo hii-ta-no?
cold-Demo catch-PAST-Q
‘Did you catch a cold, for example?’

(38) bKra.shis-yin.n’ang-la
Tashi-yin.n’ang-DAT
‘dri-go.
ask-let’s
literally ‘Let’s ask yin.n’ang Tashi.’

(39) Ocha-demo nomi-masu-ka?
tea-Demo drink-POLITE-Q
‘Would you like to get tea, for example?’

(36) *Khyed.rang cham pa
you cold
yin.n’ang brgyab’dug-gas?
yin.n’ang build-AUX-Q
literally ‘Did you catch yin.n’ang a cold?’

(40) Khyed.rang cha yin.n’ang
you tea yin.n’ang
‘thung-ya-yin-pas?
dring-FUT-AUX-Q
literally ‘Will you drink yin.n’ang tea?’