Pronouns and variable binding

1 Pronouns

Recall the "free" vs "bound" terminology for variables. This is useful for natural language sentences as well:

- (1) a. John likes Mary. a sentence with no variables; not context-sensitive
 - b. John likes him. a sentence with a variable; context-sensitive
 - c. Every boy likes himself. a sentence with a variable; not context-sensitive

We'll formalize this by giving each pronoun a numerical *index*. Let's call the mapping between free variables and their values *assignment*. We'll compute denotations relative to an *assignment function*, which is a function from the set of indices (\mathbb{N}) to D_e .

(2) **Pronouns Rule (to be replaced later):**

If α is a pronoun, g is a variable assignment, and g(i) is defined, then $[\alpha_i]^g = g(i)$.

- (3) Suppose *g* is a function and $g(3) = \text{Sam} \in D_e$.
 - a. $[[him_3]]^g = g(3) = Sam$
 - b. $[John likes him_3]^g = Like(John, g(3)) = Like(John, Sam)$
- **Q:** Does it matter what *g* returns for other values in (3)?
- A: No. It might even be undefined for other values.
- **Q:** Why did we use 3? Does the number matter?

A: The choice of number was arbitrary, but it is important whether or not we reuse numbers:

- (4) a. He₂ thinks that he_2 is smart.
 - b. He_2 thinks that he_7 is smart.
- **Q**: Does the assignment function affect other parts of the sentence?
- **A:** No. "John" and "likes" are *constants*, meaning their values are the same no matter the assignment: for any assignment function f, $[John]^f = John$.

Warning: There's a section of H&K (pp. 92–109) where they just use notation like [[him]]^{John} = John, which only accommodates one variable at a time, but then they introduce their actual notation on page 110, which we use here.

2 Rules with assignments

In order to work with assignment functions, we need to modify all our existing rules so that they pass assignment functions. These definitions are based on H&K p. 95:

(5) **Terminal Nodes (TN):** (unchanged)

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.¹

(6) Non-branching Nodes (NN):

If α is a non-branching node, and β is its daughter node, then, for any assignment g, $[\![\alpha]\!]^g = [\![\beta]\!]^g$.

(7) Functional Application (FA):

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, then, for any assignment g, if $[\![\beta]\!]^g$ is a function whose domain contains $[\![\gamma]\!]^g$, then $[\![\alpha]\!]^g = [\![\beta]\!]^g ([\![\gamma]\!]^g)$.

(8) **Predicate Modification (PM):**

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, then, for any assignment g, if $[\![\beta]\!]^g$ and $[\![\gamma]\!]^g$ are both of type $\langle e, t \rangle$, then $[\![\alpha]\!]^g = \lambda x \in D_e$. $[\![\beta]\!]^g(x) = 1$ and $[\![\gamma]\!]^g = 1$.

3 *Such that* relatives

The English expression such that allows us to describe complex predicates using pronouns.²

(9) [?] This book is such₄ that he₃ bought it₄. (g(3) = John)

Here, (9) has only one free pronoun. But the Principle of Compositionality states that $[S_1]$ be computed based on the meaning of $[S_2]$, which — if interpreted in isolation as in (10) — contains *two* free pronouns.

(10) He₃ bought it₄.

Idea: *Such* binds *it*, doing the work of creating a *predicate* out of the assignment-dependent sentence "John bought it."

(11) *Such* Rule (temporary):³

 $[[\operatorname{such}_i \gamma]]^g = \lambda x_e \cdot [[\gamma]]^{[i \mapsto x]||g|}$

¹H&K proposes (p. 94) to still use $[\![\alpha]\!]$ without an assignment function superscript for *constants*, i.e. if $[\![\alpha]\!]^g$ is the same value for all assignment functions *g*.

²Unfortunately, the use of *such that* sounds "unlyrical" (Quine, 1960: §23)... but we'll ignore that here.

³"Such" does not have a type. That's why it can only be interpreted using the *Such* Rule.

 $[i \mapsto x] || g$ is the *combination* of functions $[i \mapsto x]$ and g:

(12) **Definition: function combination** $f || g \equiv \lambda x \cdot \begin{cases} f(x) & \text{if } x \in \text{domain}(f) \\ g(x) & \text{otherwise} \end{cases}$ Read "*f* or else *g*."

Warning: H&K uses $g^{x/i}$ notation for $[i \mapsto x] || g$, but I think it's confusing so I don't use it.⁴

Let's compute $[S_1]^g$ with the following global assignment function: $g = \begin{bmatrix} 3 \mapsto \text{John} \\ 11 \mapsto \text{Tama} \end{bmatrix}$. Assume [[that]] = Id.

We can also use *such that* to construct (slightly awkward) relative clauses:

(13) ? the book such₄ that he₃ bought it₄

The semantics for *such* above works perfectly fine here.

⁴For one, I've also seen very similar notation "g(x/a)" for a function that maps *x* to *a*, which is the reverse of what H&K mean in their x/i.

4 Binding more or less than one variable

Binding multiple variables:

- (14) [?] This book is such₄ that he₃ bought it₄ and then gave it₄ to Sarah.
- (15) [?] every book such₄ that he₃ bought it₄ and then gave it₄ to Sarah

Binding no variables (vacuous binding):

- (16) * This book is such₄ that today is Monday.
- (17) * every book such₄ that today is Monday

The ungrammaticality of these examples shows that binding *no* variables is disallowed by the grammar. This is called *vacuous binding*.

5 Traces & Pronouns

- (18) **The interpretation of movement (revised):** replaces the previous movement rule Pick an arbitrary index *i*.
 - a. The base position of movement is replaced with a *trace* with index *i*: t_i .
 - b. A *binder index i* is adjoined right under the target position of the movement chain.
- (19) **Traces and Pronouns Rule (T&P):** replaces Pronouns Rule in (2) If α is a pronoun or trace, *g* is a variable assignment, and g(i) is defined, then $[\alpha_i]^g = g(i)$.
- (20) **Predicate Abstraction (PA):** (H&K p. 186 version)

replaces previous rule for λ nodes in the tree and the *Such* Rule (11)⁵ Let α be a branching node with daughters β and γ , where β dominates only a numerical index *i*. Then, for any assignment g, $[\![\alpha]\!]^g = \lambda x \cdot [\![\gamma]\!]^{[i \mapsto x]||g}$.

We can use T&P and PA to compute a relative clause like (21).

(21) the/every book that he_3 bought _____ (*he_3* is free)

A motivation for thinking that traces and pronouns really are deeply related is the fact that relative clauses can simultaneously bind both traces and pronouns:

(22) the/every dog that greeted its master (Heim and Kratzer, 1998: 245)

⁵We can think of "such" as the pronunciation of a lexicalized binder index, not generated through movement.

6 Variable binding

Quantifiers can also bind pronouns:

- (23) Every boy loves his mother.'Every boy is such that (*x* loves *x*'s mother).'
- (24) No man noticed the snake next to him. (F'No man is such that (*x* noticed the snake next to *x*).'

(Heim and Kratzer, 1998: 201)

Consider their LFs. Notice that the VP-internal subject hypothesis makes a contribution. In (23), assume that "his mother" is represented as "the mother of him":

7 Variable binding and scope

The examples in this section are based on Fox 1999: 160, in turn citing Lebeaux 1995.

(25) [At least one soldier] is expected (by Napoleon) [t to die in every battle].

 $\forall \forall > \exists, \forall \exists > \forall$

We could imagine the scope ambiguities above could involve (a) long QR of *every battle* and/or (b) reconstruction of the subject into a lower trace position. But notice:

(26) # [At least one soldier]₁ is expected by his₁ commander [t_1 to die in every battle].

 $* \forall > \exists, \sqrt{\exists} > \forall$

► Variable binding requires the binding quantifier to take scope above the pronoun, restricting possibilities for scope-taking. Here, this teaches us that inverse scope in (25) involves reconstruction of *at least one soldier* into its embedded clause and QR of *every battle*, rather than long QR of *every battle* alone.

References

- Fox, Danny. 1999. Reconstruction, binding theory, and the interpretation of chains. *Linguistic Inquiry* 30:157–196.
- Heim, Irene, and Angelika Kratzer. 1998. *Semantics in generative grammar*. Malden, Massachusetts: Blackwell.
- Lebeaux, David. 1995. Where does binding theory apply? In *University of Maryland working papers in linguistics 3,* 63–88.

Quine, Willard Van Orman. 1960. Word and object. Cambridge.