Composition and modification

1 Review of rules

(1) **Terminal Nodes (TN):**

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.

- Non-branching Nodes (NN):
 If *α* is a non-branching node, and *β* is its daughter node, then [[*α*]] = [[*β*]].
- (3) Functional Application (FA):
 If *α* is a branching node, {*β*, *γ*} is the set of *α*'s daughters, and [[*β*]] is a function whose domain contains [[*γ*]], then [[*α*]] = [[*β*]]([[*γ*]]).

2 How to study the meaning of a part

Using the Principle of Compositionality, we can figure out the meaning of individual parts of sentences.

- (4) Kara **and** Tama sleep.
- (5) John likes himself.
- (6) Sarah swims **again**.

Step by step:

- 1. What does the whole sentence mean? Paraphrase without using the target part (in bold).
- 2. What is the structure of the sentence? Draw a tree.
- 3. Fill in semantic types. Use the Triangle Method if necessary.
- 4. Using your paraphrase from Step 1, work backwards to figure out the meaning of the target part (in bold).
 - Make sure the meaning you write for the target part is general: it should not include meanings which are contributed from other material in the sentence.
 - Remember that each *λ* should correspond to a variable in the return value. When you add a *λ* variable, make sure it's used.
- 5. Check that your final meaning matches the predicted type. Recompute the structure bottomup to make sure it works. Make sure the meaning you proposed also works in other, similar examples.

Example:

(4) Kara and Tama sleep.

First, to figure out the types. The important thing to note is that there is no plural "Kara+Tama" in D_e . This teaches us that the type of the DP "Kara and Tama" cannot be type e. The only other option (using the Triangle Method, using Functional Application) is type $\langle \langle e, t \rangle, t \rangle$. Our goal is to figure out a way to get (3) to mean Sleep(Kara) \land Sleep(Tama), i.e. the same as "Kara sleeps and Tama sleeps."

- $\llbracket VP \rrbracket = \llbracket sleep \rrbracket = \lambda x_e$. Sleep(x)
- $\llbracket DP_1 \rrbracket = Kara$

•
$$\llbracket DP_2 \rrbracket = Tama$$

- Definition of and: $[and] = \lambda x_e \cdot \lambda y_e \cdot \lambda P_{\langle e,t \rangle} \cdot P(x) \wedge P(y)$
- $\llbracket \circ \rrbracket = \llbracket \text{and} \rrbracket (\llbracket \text{DP}_2 \rrbracket)$ = $[\lambda x_e \cdot \lambda y_e \cdot \lambda P_{\langle e,t \rangle} \cdot P(x) \land P(y)]$ (Tama) = $\lambda y_e \cdot \lambda P_{\langle e,t \rangle} \cdot P(\text{Tama}) \land P(y)$
- $\llbracket DP_3 \rrbracket = \llbracket \circ \rrbracket (\llbracket DP_1 \rrbracket)$ = $[\lambda y_e \cdot \lambda P_{\langle e,t \rangle} \cdot P(\text{Tama}) \land P(y)]$ (Kara) = $\lambda P_{\langle e,t \rangle} \cdot P(\text{Tama}) \land P(\text{Kara})$

•
$$[S] = [DP_3] ([VP]])$$

= $[\lambda P_{\langle e,t \rangle} \cdot P(Tama) \wedge P(Kara)] (\lambda x_e \cdot Sleep(x))$
= 1 iff $(\lambda x_e \cdot Sleep(x))(Tama) \wedge (\lambda x_e \cdot Sleep(x))(Kara)$
= 1 iff Sleep(Tama) \wedge Sleep(Kara)

3 Non-verbal predicates

(7) Kara is a cat.

Compositionality allows us to (a) use what we know and (b) work backwards.

(8) Kara sleeps and is a cat.

The semantics for conjunction developed in PS3 (hopefully) is only defined for conjunctions of equal semantic type.

- (9) a. Austin is a city and Austin is in Texas.
 - b. Austin is a city and is in Texas.
 - c. Austin is a city and in Texas.
 - d. * Austin is a city and Texas.

4 Modification

- (10) a. Kara is a black cat.
 - b. Kara is black and Kara is a cat.
- (11) a. Austin is a city in Texas.
 - b. Austin is a city and Austin is in Texas.

Each pair of sentences in (10a,b) and (11a,b) is truth-conditionally equivalent. We call such modifiers *intersective*.

<u>Option 1:</u> Intuitively, *black* modifies *cat*. Write a semantics so that [black] modifies [cat] through Functional Application.

(12) $\llbracket \text{black} \rrbracket = \lambda P_{\langle e, t \rangle} \cdot \lambda x \cdot \text{Black}(x) \wedge P(x)$

The disadvantage of this approach is that attributive adjectives (modifiers) and predicate adjectives have different semantics, although taking a predicate adjective $\langle e, t \rangle$ and converting it to its attributive form $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$ is easy: *IFS* (p. 193–195) and *EFS* (pp. 82–84) both describe this procedure.¹

Option 2: Introduce a new composition rule.

(13) **Predicate Modification (PM):** from H&K If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both in $D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x_e \cdot [\![\beta]\!] (x) \wedge [\![\gamma]\!] (x)$.

Now we can simply use the regular $\langle e, t \rangle$ denotations for *black* and *in Texas*.

5 Non-intersective modifiers

What about the following modifiers?

- (14) a. This is a fake diamond.
 - b. This is fake and is a diamond.
- (15) a. John is a short basketball-player.
 - b. This is short and is a basketball-player.
- (16) a. Obama is a former president.
 - b. * Obama is former and is a president.

¹The use of a systematic procedure for translating a meaning in one type into a corresponding meaning in another type is called *type-shifting*.