Plurality

Ryan Walter Smith

November 112020

1 Introduction

Goals:

- 1. Introduce the notion of plurals
- 2. Show why we need a special approach to plurals
- 3. Distributive and collective predicates
- 4. Mereology
- 5. Open issues

2 Plurals

Familiar basic predications are easy to express in predicate logic.

- (1) a. John walked (Walk(j))
 - b. John is a student (Student(j))

But this isn't all there is to language! We also have expressions that refer to more than one individual.

- (2) a. John and Mary walked
 - b. John and Mary are students

How do we express these logically?

- (3) A first attempt?
 - a. John and Mary walked = $Walk(j) \land Walk(m)$
 - b. John walked and Mary walked

This doesn't work in every case though. Some predicates require a plural subject.

(4) a. John and Mary gathered.

b. *John gathered and Mary gathered

This shows us two things:

- Some predicates are semantically sensitive to plurality.
- It's not possible to translate plural expressions entirely as conjunctions of singulars.

3 Distributive and collective predicates

We notice that in some cases it is possible to treat predications of a plural entity as a conjunction of predications of singular entities, but not in others.

- The first kind of predicates, like *walk*, are called **distributive predicates**: if 'John and Mary walked' is true, 'John walked' is true, and so it 'Mary walked.'
- The second class of predicates, like *gather*, are called **collective pred**icates: these only hold of plural entities, and they do not possess the same distributive property: 'John and Mary gathered in the park' does not mean that 'John gathered in the park.'

Some predicates are ambiguous between a collective and a distributive reading.

- (5) John and Mary lifted the table
 - a. Distributive: John lifted the table and put it down. Then Mary lifted the table. They *each* lifted the table.
 - b. Collective: John and Mary lifted the table together.

Mereology

Mereology: a formal approach to representing parthood

- Applied to plurals, plurals are those expressions that have proper parts.
- This will be what we add to predicate logic to analyze plurals.

Singular individuals like *John* and *the student* are called **atoms** or **atomic individuals**: things that have no proper parts.

- They are represented as individual constants, as usual.
- (6) $\llbracket John \rrbracket = j$

Plural individuals like *John and Mary* and *the students*, as represented as **sums** or **sum individuals**: they have proper parts.

- For any two individuals x and y, we write their sum as $x \oplus y$.
- You can think of the \oplus symbol as meaning 'and'
- (7) $[\text{John and Mary}] = j \oplus m$

In order to talk about how John and Mary are part of their sum $j \oplus m$, we use the **parthood relation**, \leq .

(8) $x \le y$ iff for some $z, x \oplus z = y$

This means that x is part of y iff y is equal to the sum of x with something else. So $j \leq j \oplus m$, and $m \leq j \oplus m$.

We will treat singular predicates like *student* as denoting sets of atomic individuals.

(9) $[student] = \{j, m, b\}$

In order to make plural predicates out of singular ones, we will use a special operation, called the **algebraic closure operatior**.

- If P is a predicate, *P is its algebraic closure.
- * is often simply called the **star operator**

The star operator takes a set of things, and makes a new set with every possible way of making sums out of the things in the set.

- (10) *P is the smallest set where
 - 1) If $a \in P$, then $a \in P$
 - 2) If a and b are in *P, then $a \oplus b$ are in *P
- (11) $[students] = *[student] = \{j, m, b, j \oplus m, j \oplus b, m \oplus b, j \oplus m \oplus b\}$

4 Plurals in predicate logic

We now have a way to write sentences with plurals in predicate logic.

- (12) John and Mary walked = $Walk(j \oplus m)$
- (13) John and Mary are students = *Student(j \oplus m)

Predicates like *walk* are distributive. We can represent this by saying if a sum is in the denotation of *walk*, then so are the atoms that are part of that sum.

(14) $\llbracket \text{walk} \rrbracket = \{j \oplus m, j \oplus b, j, m, b, ...\}$

Collective predicates, on the other hand, are predicates that only have sums in their extensions. *Gather*, then, does not have any atomic individuals in its extension.

(15) $\llbracket \text{gather} \rrbracket = \{ j \oplus m, j \oplus b, ... \}$

This is why *walk*, but not *gather*, can be paraphrased with conjunctions.

How do we deal with ambiguous predicates, like *lift a table*? One thing that we can do is treat the collective reading as basic. So *lift a piano* is collective by default, and can be turned into a distributive predicate.

- In order to do this, we use a **distributive operator**.
- (16) $\text{Dist}(P) = \lambda x. \forall y [\text{Atom}(y) \land y \leq x \rightarrow P(y)]$
- (17) John and Mary lifted a table
 - a. Collective: LiftATable($j \oplus m$)
 - b. Distributive: Dist(LiftATable)(j \oplus m) = $\forall y[Atom(y) \land y \leq j \oplus m \rightarrow LiftATable(y)]$

5 Things to think about

1. Consider the translations of *student* and *students* again.

- (18) $[[student]] = \{j, m, b\}$
- (19) $[[students]] = *[[student]] = \{j, m, b, j \oplus m, j \oplus b, m \oplus b, j \oplus m \oplus b\}$

What sort of prediction do we make about a sentence like *John is students*? 2. We claimed that some predicates, like *gather*, are only acceptable with plural nouns. Is this true? Consider the following:

(20) John gathered the water

What is special about *water* that makes it okay with a collective predicate?

3. How might we put the pieces presented above together compositionally?