# Pronouns

- ► Let's schedule the final!
- No class next week! Sleep some more. But do PS7.
- Read Grice 1975 on Luminus for week 10.

### 1 Notes on variables

#### (1) **Some math "sentences":**

| a. $1 = 2 - 1$                 | a sentence with no variables; not context-sensitive      |
|--------------------------------|----------------------------------------------------------|
| b. $n = 2 - 1$                 | a sentence with a variable; context-sensitive            |
| c. $\forall n (2(n+1) = 2n+2)$ | a sentence with a variable; <i>not</i> context-sensitive |

- We say (1b) contains a *free variable* because the truth of the sentence depends on the context. In particular, the sentence is true iff the variable "*n*" is interpreted as 1.
- The truth of sentence (1c), like (1a), does not depend on the context at all.

#### (2) Some terminology, using (1c) as an example:

$$\forall n \\ \underbrace{\left(2\binom{n}{bound} + 1\right) = 2 \\ \underbrace{n}_{bound} + 2\right)}_{scope}$$

- *Binders* control the interpretation of a particular variable within a certain part of its structure, which we call its *scope*. Here, ∀ *binds* the variable *n* in its scope.
- We call variables that are in the scope of a matching binder *bound variables*.

# 2 Pronouns

This "free" vs "bound" terminology is also useful for natural language sentences as well:

- (3) a. John likes Mary. a sentence with no variables; not assignment-sensitive
  - b. John likes him. a sentence with a variable; assignment-sensitive
  - c. Every boy likes himself. a sentence with a variable; not assignment-sensitive

We'll formalize this by making pronouns denote variables. To keep track of different pronouns/variables, we use numerical *indices*.

#### (4) **Pronouns Rule (to be replaced later):**

If  $\alpha$  is a pronoun,  $\llbracket \alpha_i \rrbracket = v_i$ 

in IFS notation

But how do we interpret variables? We use the assignment function!

(5) 
$$\llbracket v_i \rrbracket^{M,g} = g(i)$$
 in *IFS* notation

Think of the assignment function as a mapping of (free) variables to the individuals that they refer to, in a given context/conversation.

- (6) Suppose *g* is a function and  $g(3) = \text{Sam} \in D_e$ .
  - a. Translating from English to predicate logic:
    - i.  $[[him_3]] = v_3$
    - ii.  $[John likes him_3] = Like(John, v_3)$
  - b. Translating from predicate logic to individuals and truth values in the model *M*:

i. 
$$[v_3]^{M,g} = g(3) =$$
Sam

- ii.  $[[Like(John, v_3)]]^{M,g} = 1$  iff John likes Sam in M
- **Q:** Does it matter what *g* returns for other values in (6)?
- A: No. It might even be undefined for other values.
- **Q:** Why did we use 3? Does the number matter?
- A: The choice of number was arbitrary, but it is important whether or not we reuse numbers:
- (7) a. He<sub>2</sub> thinks that  $he_2$  is smart.
  - b. He<sub>2</sub> thinks that he<sub>7</sub> is smart.
- **Q:** Does the assignment function affect other parts of the sentence?
- **A:** No. "John" and "likes" are *constants*, meaning their values are the same no matter the assignment: for any assignment function g, [John]<sup>g</sup> = John.

### 3 *Such that* relatives

The English expression such that allows us to construct relative clauses without movement.<sup>1</sup>

(8) ? This book is such<sub>4</sub> that he<sub>3</sub> bought it<sub>4</sub>. (g(3) = John)



Here, (8) has only one free pronoun. But the Principle of Compositionality states that  $[S_1]$  be computed based on the meaning of  $[S_2]$ , which — if interpreted in isolation as in (9) — contains *two* free pronouns.

(9) He<sub>3</sub> bought it<sub>3</sub>.

**Idea:** *Such* binds *it*, doing the work of creating a *predicate* out of the assignment-dependent sentence "John bought it."

- (10) Such Rule (temporary):<sup>2</sup>
  - $\llbracket \operatorname{such}_i \gamma \rrbracket = \lambda v_i \cdot \llbracket \gamma \rrbracket$

**Exercise:** Compute  $[S_1]$ . Assume [that] = Id.

<sup>&</sup>lt;sup>1</sup>Unfortunately, the use of *such that* sounds "unlyrical" (Quine, 1960: §23)... but we'll ignore that here. <sup>2</sup>"Such" does not have a type. That's why it can only be interpreted using the *Such* Rule.

We can also use *such that* to construct (slightly awkward) *relative clauses*:

(11) <sup>?</sup> the book such<sub>4</sub> that he<sub>3</sub> bought it<sub>4</sub>

The semantics for *such* above works perfectly fine here.



### 4 Binding more or less than one variable

#### **Binding multiple variables:**

- (12) <sup>?</sup> This book is such<sub>4</sub> that  $he_3$  bought it<sub>4</sub> and then gave it<sub>4</sub> to Sarah.
- (13) ? every book such<sub>4</sub> that  $he_3$  bought it<sub>4</sub> and then gave it<sub>4</sub> to Sarah

#### Binding no variables (vacuous binding):

- (14) \* This book is such<sub>4</sub> that today is Monday.
- (15) \* every book such<sub>4</sub> that today is Monday

The ungrammaticality of these examples shows that binding *no* variables is disallowed by the grammar. This is called *vacuous binding*.

### 5 Traces & Pronouns

- (16) The interpretation of movement:(from handout 6)Pick an arbitrary variable, such as x.
  - a. The base position of movement is replaced with a *trace*; [t] = x, type *e*.
  - b. A  $\lambda$ -binder  $\lambda x$  is adjoined right under the target position of the movement chain.
- (17) **Traces and Pronouns Rule (T&P):** replaces Pronouns Rule in (4) If  $\alpha$  is a pronoun or trace,  $[\![\alpha_i]\!]^g = v_i$ .
- (18) **Predicate Abstraction (PA):** replaces previous  $\lambda$  Rule and the *Such* Rule (10)<sup>3</sup> If  $\alpha$  has daughters  $\beta$  and  $\gamma$ , where  $\beta$  is a binder of variable x ( $\lambda x$  or *such*<sub>x</sub>),  $[\![\alpha]\!] = \lambda x$ .  $[\![\gamma]\!]$

A motivation for thinking that traces and pronouns really are deeply related is the fact that relative clauses can simultaneously bind both traces and pronouns:

(19) every dog that bit its master (based on Heim and Kratzer, 1998: 245)

**Exercise:** Compute (19). Assume *master* is type  $\langle e, e \rangle$ :  $[master] = \lambda x$ . master(x).

<sup>&</sup>lt;sup>3</sup>We can think of "such" as the pronunciation of a lexicalized binder index, not generated through movement.

# 6 Variable binding

Quantifiers can also bind pronouns:

(20) Every boy loves his mother.'Every boy *x* is such that (*x* loves *x*'s mother).'

**Exercise:** Compute (20). Notice that the VP-internal subject hypothesis makes a contribution. Assume *mother* is type  $\langle e, e \rangle$ : [mother] =  $\lambda x$  . mother(x)

#### References

Heim, Irene, and Angelika Kratzer. 1998. *Semantics in generative grammar*. Malden, Massachusetts: Blackwell.

Quine, Willard Van Orman. 1960. Word and object. Cambridge.

Erlewine