
Basic composition, the typed λλλ-calculus

Announcement: Please post textbook issues/questions in the Luminus forum.

Review

• Meaning as truth conditions

– Sentences are either true 1 or false 0, given a particular model.

– p “entails” q if and only if, for any model M, if JpKM
� 1 then JqKM

� 1

• De is the domain of individuals

• We can think of predicates...

1. as a function from De → {0, 1}:

(1) JsleepKM(x) �
{

1 if x sleeps in M

0 otherwise
(with some abuse of notation, we will

clarify below)

2. as the set of individuals that satisfy the predicate

Nouns like cat and student are also predicates like sleep: functions from De → {0, 1}.
� Today we’ll concentrate on their meaning as functions.

1 Functions and semantic types

Every linguistic expression has a semantic type:

• Terms (which are individuals) are type e and in De e.g. proper names

• Wffs (which have truth values) are type t and in Dt � {0, 1} e.g. sentences

• A function from type τ to σ is type 〈τ, σ〉 and in D〈τ,σ〉

Semantic type does not simply map to syntactic category. Where do they come apart?

2 λλλ notation

Functions in math classes are often defined by saying, for example, f (x) � x + 1 and x must be

a number (in Dn). We will use λλλ notation for defining functions:

(2) f � λx . x + 1

For example, f (5) � [λx . x + 1](5) � 5 + 1 � 6. Applying a function to an argument means

“replacing” instances of the outermost λ variable with the argument (5) in the value description.

Erlewine EL4203 Semantics: September 4, 2019 1

We can be more specific and clarify that arguments of f need to be of type n:

(3) λxnnn . x + 1

If the function’s argument is not of the right type, the result is undefined. For example, f (John)
is undefined because John < Dn .

Exercises

(4) g � [λx . λy . y × (x − 1)]. Compute
(
g(3)

)
(4).

(5) What type is λxe . λye . x � y ?

(6) What type is λP〈e ,t〉 . λQ〈e ,t〉 . ∀x[P(x) → Q(x)]?

(7) Compute: [λ f〈e ,t〉 . [λxe . f (x) ∧Gray(x)]]
(
[λye . Cat(y)]

)
Note: Where there are two λ terms next to each other, some authors leave out the period . :

“λxλy . x � y” is equivalent to “λx . λy . x � y” .

3 A note on the our mapping(s) and IFS notation

Our goal is to develop a systematic mapping between linguistic form and meanings, which we

can think of as truth conditions for declarative sentences. We do this in two steps:

linguistic expression predicate logic expression example meaning in model/world

love λy . λx . Love(x , y) {〈Fido,Mary〉, 〈Pochi, Taro〉}
Pochi is a dog Dog(Pochi) 1

Agneta (the word) Agneta / ag (the symbol) Agneta (the person)

The textbook IFS uses; for the first step and J...KM for the second step:

linguistic expression predicate logic expression example meaning in M

love ; λy . λx . Love(x , y)
JLoveKM = {〈Fido,Mary〉, 〈Pochi, Taro〉}

In this class we will use the notation J...KJ...KJ...K for both steps!

linguistic expression predicate logic expression example meaning in M

JloveK = λy . λx . Love(x , y)
JLoveKM = {〈Fido,Mary〉, 〈Pochi, Taro〉}

Erlewine EL4203 Semantics: September 4, 2019 2

Practically, in this class we will often just be doing the first step — translating the linguistic

expression to its corresponding predicate logic expression.

Practical advice:

• When reading IFS: if you see “expression; blah”, it’s always the first step. You can think

of it as “JexpressionK = blah”.1

• When reading something I write, or some other semanticist writes: if you see J...K, look at

what’s inside. If it’s a linguistic expression, then it’s the first step and the output should

be a predicate logic expression (or equivalent); if it’s a predicate logic expression, and a

model M is specified, the result should be its meaning in the model M.

4 Composition

(8) The Principle of Compositionality: The meaning of a linguistic expression is built of

the meaning of its constituent parts, in a systematic fashion.

(9) S

DP

Tama

VP

V
sleeps

A recursive definition for the interpretation function J...K (first step):

(10) Terminal Nodes (TN):

If α is a terminal node, JαK is specified in the lexicon.

(11) Non-branching Nodes (NN):

If α is a non-branching node, and β is its daughter node, then JαK = JβK.

(12) Functional Application (FA):

If α is a branching node, {β, γ} is the set of α’s daughters, and JβK is a function whose

domain contains JγK, then JαK = JβK(JγK).

1Later they switch to 〈〈...〉〉 for the first step; again, you can think of 〈〈expression〉〉 as JexpressionK (first step).

Erlewine EL4203 Semantics: September 4, 2019 3

Some hints for computing the denotation of complex structures:

1. Start with a tree. (We ignore DP-internal structure for names and, for now, model the

sentence as S, not TP/IP.)

2. Annotate each node with its semantic type.

(13) The Triangle Method:

Look at projections like α

β γ

as triangles. Like the angles on a triangle, if you

know two of the three, you should be able to determine the type of the third

“corner.” Sometimes there will be two or three options, but at least you will know

what the limited set of possibilities are.

3. Compute the denotation of each node in the tree. You can work bottom-up or top-down.

For each node, give the rule that is being used (TN, NN, FA, etc.) to obtain the denotation.

5 More examples

(14) John loves Mary.

(15) Are these the same?

a. JloveK = λx . λy . Love(y , x)

b. JloveK = λy . λx . Love(x , y)

c. JloveK = λx . λy . Love(x , y)

Following IFS, read two-place functions in subject–object order: in R(x , y), x is the subject and

y is the object.

(16) a. It-is-not-the-case-that Tama sleeps.

b. Tama does not sleep.

(17) JdoesK = Id (the identity function)

= λP . P for any type of argument

I use “Id” as a shorthand: Id ∈ D〈τ,τ〉 for any type τ

(18) John introduced Mary to Bill.

(19) Binary branching: Every branching node will have exactly two daughters.

Erlewine EL4203 Semantics: September 4, 2019 4

	Functions and semantic types
	- .4 notation
	A note on the our mapping(s) and IFS notation
	Composition
	More examples

