Final review

1 Key terms and concepts

Key terms and concepts, roughly in the order they were introduced.

- The Principle of Compositionality
- truth value, truth condition, models
 - contradiction, tautology
- entailment (\Rightarrow), presupposition (\rightsquigarrow): how to distinguish
- set notation: $\{x : x \text{ is a cat}\} \in \subseteq = \cap \cup \setminus$
- other mathematical notation: $\forall \exists \land \lor f || g [i \mapsto x]$
- the denotation/interpretation function [...]
- types: $e, t, \langle \sigma, \tau \rangle$ D_{τ} is the domain of type τ
- <u> λ -notation</u>: $f = \lambda$ <u>x</u> : <u> $x \in \mathbb{R}$ </u> . <u>x + 1</u> argument variable domain condition value description
- characteristic functions of sets
- The Triangle Method; Binary Branching
- variables: bound vs free, binders, such that, index, assignment function, vacuous binding
- Quantifiers: (Handouts 2, 5, 7)
 - Generalized Quantifier Theory
 - quantificational determiners
 - type $\langle\langle e,t\rangle,t\rangle$
 - the problem of quantifiers in object position
 - restrictor, scope, bound pronouns
- NPIs and downward-entailment: (Handout 2)
 - A quantificational determiner *D* is *left downward-entailing* (DE; or downward monotone) if and only if for all $A_1 \subseteq A_2 \subseteq D_e$ and $B \subseteq D_e$, $D(A_2, B) \Rightarrow D(A_1, B)$. (and similarly for *right DE*)
 - NPIs are allowed in *downward-entailing* environments. (Ladusaw, 1979)
- Modifiers: (Handout 4)
 - Intersective, non-intersective

- Definite descriptions: (Handout 4)
 - [[the]]
 - Presupposition calculation
- The interpretation of movement: (Handouts 6, 7)

Pick an arbitrary index *i*.

- 1. The base position of movement is replaced with a *trace* with index *i*: t_i .
- 2. A *binder index i* is adjoined right under the target position of the movement chain.
- Grammatical architecture:
 - T/Y-model: Syntax, Logical Form (LF), Phonological Form (PF)
 - overt and covert movement; islands
 - Quantifier Raising (QR); reconstruction
- Focus: (Handout 8)
 - alternatives, prejacent, F-mark
 - focus-semantic value $[...]^f$ (7), ordinary semantic value $[...]^o$
 - only, also
 - Taglicht ambiguities
- Intensional semantics: (Handout 9)
 - substitution property, intensional contexts
 - extension, intension
 - possible worlds; type *s*
 - modals bases: epistemic (EPIST), deontic (DEONT), "root"
 - modal forces: possibility (\exists), necessity (\forall)
 - Intensional Functional Application (8)
 - conditionals: material implication (\rightarrow) , modal restrictor view
- Ellipsis: (Handout 10)
 - LF Identity Condition on Ellipsis (H&K p. 250) (9)
 - scope parallelism
 - strict and sloppy readings of pronouns
 - Antecedent-Contained Deletion (ACD); Sag-Williams generalization (10)

2 Basic composition rules

(1) **Terminal Nodes (TN):**

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.

(2) Non-branching Nodes (NN):

If α is a non-branching node, and β is its daughter node, then $[\![\alpha]\!] = [\![\beta]\!]$.

(3) **Functional Application (FA):** (Handout 4 version; based on H&K) If α is a branching node, { β , γ } is the set of α 's daughters, then

- [[α]] is defined if and only if: [[β]] and [[γ]] are both defined and
 [[β]] is a function whose domain contains [[γ]];
- if defined, $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$.

(4) **Predicate Modification (PM):**

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both in $D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x \in D_e$. $[\![\beta]\!](x) = 1$ and $[\![\gamma]\!] = 1$

(5) Traces and Pronouns Rule (T&P):

If α is a pronoun or trace, g is a variable assignment, and g(i) is defined, then $[\![\alpha_i]\!]^g = g(i)$.

(6) **Predicate Abstraction (PA):**

Let α be a branching node with daughters β and γ , where β dominates only a numerical index *i*. Then, for any assignment g, $[\![\alpha]\!]^g = \lambda x \cdot [\![\gamma]\!]^{[i \mapsto x]||g}$.

3 Additional technical concepts

(7) A recursive definition for the computation of focus-semantic values:

If α of type τ is F-marked: $[\![\alpha]\!]^f = a$ contextually-determined subset of D_{τ} . If α is not F-marked:

$$\llbracket \alpha \rrbracket^{f} = \begin{cases} \left\{ \llbracket \alpha \rrbracket^{o} \right\} & \text{if terminal node} \\ \llbracket \beta \rrbracket^{f} & \text{if non-branching with daughter } \beta \\ \left\{ b \circ g : b \in \llbracket \beta \rrbracket^{f}, g \in \llbracket \gamma \rrbracket^{f} \right\} & \text{if branching with daughters } \beta, \gamma \end{cases}$$

where \circ is the appropriate composition rule: FA or PM.

(8) **Intensional Functional Application:** (from Handout 9; based on von Fintel and Heim, 2011) If α is a branching node and $\{\beta, \gamma\}$ is the set of its daughters, then, for any world w and assignment g: if $[\![\beta]\!]^{w,g}$ is a function whose domain contains $\lambda w'_s \cdot [\![\gamma]\!]^{w',g}$, then $[\![\alpha]\!]^{w,g} = [\![\beta]\!]^{w,g} (\lambda w'_s \cdot [\![\gamma]\!]^{w',g})$.

EL4203 Semantics: April 10, 2017

- (9) LF Identity Condition on Ellipsis: (H&K p. 250)
 A constituent may be deleted at PF only if it is a copy of another constituent at LF.
 <u>A rule for indices (p. 254)</u>: No LF representation (for a sentence or multisentential text) must contain both bound occurrences and free occurrences of the same index.
- (10) The Sag-Williams generalization: (Sag, 1976; Williams, 1974)
 In Antecedent-Contained Deletion, the size of the ellipsis determines the lowest possible scope of the object DP.

References

von Fintel, Kai, and Irene Heim. 2011. Intensional semantics. Manuscript, MIT.

Heim, Irene, and Angelika Kratzer. 1998. Semantics in generative grammar. Blackwell.

- Ladusaw, William A. 1979. Polarity sensitivity as inherent scope relations. Doctoral Dissertation, University of Texas at Austin.
- Sag, Ivan Andrew. 1976. Deletion and logical form. Doctoral Dissertation, Massachusetts Institute of Technology.

Williams, Edwin. 1974. Rule ordering in syntax. Doctoral Dissertation, Massachusetts Institute of Technology.