Modification and definite descriptions

1 Review of rules

(1) **Terminal Nodes (TN):**

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.

- (2) **Non-branching Nodes (NN):** If α is a non-branching node, and β is its daughter node, then $[\![\alpha]\!] = [\![\beta]\!]$.
- (3) Functional Application (FA):

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ is a function whose domain contains $[\![\gamma]\!]$, then $[\![\alpha]\!] = [\![\beta]\!]([\![\gamma]\!])$.

2 Non-verbal predicates

(4) Kara **is a** cat.

Compositionality allows us to (a) use what we know and (b) work backwards.

(5) Kara sleeps and is a cat.

The semantics for conjunction developed in PS3 (hopefully) is only defined for conjunctions of equal semantic type.

- (6) a. Austin is a city and Austin is in Texas.
 - b. Austin is a city and is in Texas.
 - c. Austin is a city and in Texas.
 - d. * Austin is a city and Texas.

3 Modification

- (7) a. Kara is a black cat.
 - b. Kara is black and Kara is a cat.
- (8) a. Austin is a city in Texas.
 - b. Austin is a city and Austin is in Texas.

Each pair of sentences in (14a,b) and (8a,b) is truth-conditionally equivalent. We call such modifiers *intersective*.

Option 1: Intuitively, *black* modifies *cat*. Write a semantics so that [black] modifies [cat] through Functional Application.

(9) $\llbracket \text{black} \rrbracket = \lambda P_{\langle e,t \rangle} \cdot \lambda x \cdot x \text{ is black and } P(x) = 1$

The disadvantage of this approach is that attributive adjectives (modifiers) and predicate adjectives have different semantics, although taking a predicate adjective $\langle e, t \rangle$ and converting it to its attributive form $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$ is easy: Winter (pp. 82–84) does this.

Option 2: Add some glue.

(10) **Predicate Modification (PM):**

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both in $D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x \in D_e$. $[\![\beta]\!](x) = 1$ and $[\![\gamma]\!] = 1$

Now we can simply use the regular $\langle e, t \rangle$ denotations for *black* and *in Texas*.

4 Non-intersective modifiers

What about the following modifiers?

- (11) a. This is a fake diamond.
 - b. This is fake and is a diamond.
- (12) a. John is a short basketball-player.
 - b. This is short and is a basketball-player.
- (13) a. Obama is a former president.
 - b. * Obama is former and is a president.

5 Definite descriptions and presupposition calculation

(14) The black cat is in Texas.

A first approximation:

(15) $\llbracket \text{the} \rrbracket = \lambda P_{\langle e, t \rangle} \cdot \lambda Q_{\langle e, t \rangle} \cdot |P| = 1 \text{ and } P \subseteq Q$

(using set notation for the predicates *P* and *Q*)

What meaning do we predict for (14)? Is that what (14) means?

- (16) a. I took the elevator in AS5.
 - b. I took the escalator in AS5.

(17) **A "partial"** semantics for the definite determiner:¹

 $\llbracket \text{the} \rrbracket = \lambda f : f \in D_{\langle e,t \rangle}$ and there is exactly one *x* such that f(x) = 1.

the unique *y* such that f(y) = 1

(18) [the black cat] = the unique black cat

 \rightsquigarrow there exists exactly one black cat

presupposition

(19) Functional Application (revised; compare to H&K p. 76):²

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, then

• [*α*] is defined if and only if: [*β*] and [*γ*] are both defined and

 $\llbracket \beta \rrbracket$ is a function whose domain contains $\llbracket \gamma \rrbracket$;

• if defined, $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$.

Exercises:

- (20) The black cat likes the big dog.
- (21) I read the book on the table.

Food for thought:

- (22) a. I saw John's sister.
 - b. Mary is John's sister.
- (23) The black cat is Kara.
- (24) John is the spy.

¹A *partial function* is a function that is not defined for all possible values of its arguments.

²H&K describes this in terms of linguistic objects *being in the domain of* [].] rather than being defined or not.