Final review

1 Key terms and concepts

Key terms and concepts, roughly in the order they were introduced. (*For terms in italics and parentheses, only a very basic understanding is expected.*)

- truth condition, compositionality
- entailment (\Rightarrow), presupposition (\rightsquigarrow): how to distinguish
- set notation: $\{x : x \text{ is a cat}\} \in \subseteq = \cap \cup \setminus$
- other mathematical notation: $\forall \exists \land \lor f || g [i \mapsto x]$
- the interpretation function [...]
- types: *e*, *t*, $\langle \sigma, \tau \rangle$ D_{τ} is the domain of type τ
- <u> λ -notation</u>: $f = \lambda$ <u>x</u> : <u> $x \in \mathbb{R}$ </u> . <u>x + 1</u> argument variable domain condition value description
- characteristic functions of sets
- The Triangle Method; Binary Branching
- variables: bound vs free, binders, such that, index, assignment function, vacuous binding
- <u>The interpretation of movement:</u> Pick an arbitrary index *i*.
 - 1. The base position of movement is replaced with a *trace* with index *i*: t_i .
 - 2. A *binder index i* is adjoined right under the target position of the movement chain.
- Quantifiers:
 - Generalized Quantifier Theory
 - quantificational determiners
 - type $\langle\langle e,t\rangle,t\rangle$
 - the problem of quantifiers in object position
 - restrictor, scope, bound pronouns
- Grammatical architecture:
 - T/Y-model: Syntax, Logical Form (LF), Phonological Form (PF)
 - overt and covert movement; islands
 - Quantifier Raising (QR); (reconstruction)

- Ellipsis: (Handout 7)
 - LF Identity Condition on Ellipsis (H&K p. 250) (7)
 - scope parallelism
 - strict and sloppy readings of pronouns
 - Antecedent-Contained Deletion (ACD); Sag-Williams generalization (8)
- Focus: (Handout 8)
 - alternatives, prejacent, F-mark
 - focus-semantic value $[...]^f$, point-wise composition (9), ordinary semantic value $[...]^o$
 - only, also
 - Taglicht ambiguities
- Modals and conditionals: (Handout 9)
 - extension, intension
 - possible worlds; type *s*
 - modals bases: epistemic (EPIST), deontic (DEONT), "root"
 - modal forces: possibility (\exists), necessity (\forall)
 - Intensional Functional Application (10)
 - conditionals: material implication (\rightarrow), modal restrictor view
- Negative Polarity Items (NPIs): (Handout 10)
 - licensor, upward-entailing, downward-entaling (DE), (strong NPIs)
 - even, (even associating with an indefinite)
- Questions: (Handout 11)
 - the meaning of a question is..., (*weak vs strong exhaustivity*)
 - question-answer congruence (11)
 - alternative question; multiple *wh*-questions: single-pair vs pair-list, ALTSHIFT (12)
- Binding and coreference: (Handout 12)
 - Traditional Binding Theory: Conditions A, B, C
 - coreference: accidental coreference vs variable binding
 - syntactic binding vs semantic binding
 - Have Local Binding! (13)
 - indices under ellipsis, (Dahl's puzzle)

2 Basic composition rules

You will have to be able to use these six rules without their definitions, and give their names.

(1) **Terminal Nodes (TN):**

If α is a terminal node, $[\![\alpha]\!]$ is specified in the lexicon.

(2) Non-branching Nodes (NN):
 If *α* is a non-branching node, and *β* is its daughter node, then [[*α*]] = [[*β*]].

(3) **Functional Application (FA):** (Handout 4 version; based on H&K) If α is a branching node, { β , γ } is the set of α 's daughters, then

- [[α]] is defined if and only if: [[β]] and [[γ]] are both defined and
 [[β]] is a function whose domain contains [[γ]];
- if defined, $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$.

(4) **Predicate Modification (PM):**

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both in $D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x \in D_e$. $[\![\beta]\!](x) = 1$ and $[\![\gamma]\!] = 1$

(5) **Traces and Pronouns Rule (T&P):**

If α is a pronoun or trace, g is a variable assignment, and g(i) is defined, then $[\alpha_i]^g = g(i)$.

(6) **Predicate Abstraction (PA):**

Let α be a branching node with daughters β and γ , where β dominates only a numerical index *i*. Then, for any assignment g, $[\![\alpha]\!]^g = \lambda x \cdot [\![\gamma]\!]^{[i \mapsto x]] ||g|}$.

3 Additional technical concepts

If any of the following rules/concepts are necessary on the final, they will be given:

(7) LF Identity Condition on Ellipsis: (H&K p. 250)

A constituent may be deleted at PF only if it is a copy of another constituent at LF.

<u>A rule for indices (p. 254)</u>: No LF representation (for a sentence or multisentential text) must contain both bound occurrences and free occurrences of the same index.

(8) The Sag-Williams generalization: (Sag, 1976; Williams, 1974)

In Antecedent-Contained Deletion, the size of the ellipsis determines the lowest possible scope of the object DP.

(9) A recursive definition for the computation of focus-semantic values:

Terminal nodes (TN):

$$\llbracket \alpha_{\tau} \rrbracket^{f} = \begin{cases} \{\llbracket \alpha_{\tau} \rrbracket\} & \text{if } \alpha \text{ not F-marked} \\ \text{a subset of } D_{\tau} & \text{if } \alpha \text{ F-marked} \end{cases}$$

Point-wise functional application (PFA):

$$\begin{bmatrix} \alpha_{\tau} \\ \vdots \\ \beta_{\langle \sigma, \tau \rangle} & \gamma_{\sigma} \end{bmatrix}^{f} = \begin{cases} \{b(g) \mid b \in [\![\beta]\!]^{f}, g \in [\![\gamma]\!]^{f}\} & \text{if } \alpha \text{ not F-marked} \\ \text{a contextually-determined subset of } D_{\tau} & \text{if } \alpha \text{ F-marked} \end{cases}$$

- (10) **Intensional Functional Application:** (from Handout 9; based on von Fintel and Heim, 2011) If α is a branching node and $\{\beta, \gamma\}$ is the set of its daughters, then, for any world w and assignment g: if $[\![\beta]\!]^{w,g}$ is a function whose domain contains $\lambda w'_s \cdot [\![\gamma]\!]^{w',g}$, then $[\![\alpha]\!]^{w,g} = [\![\beta]\!]^{w,g} (\lambda w'_s \cdot [\![\gamma]\!]^{w',g})$.
- (11) Condition on question-answer congruence (Rooth, 1992): $[question]^{o} \subseteq [answer]^{f}$
- (12) ALTSHIFT (Kotek, to appear): $\llbracket [ALTSHIFT \alpha] \rrbracket^o = \llbracket \alpha \rrbracket^f$ $\llbracket [ALTSHIFT \alpha] \rrbracket^f = \left\{ \llbracket [ALTSHIFT \alpha] \rrbracket^o \right\} = \left\{ \llbracket \alpha \rrbracket^f \right\}$
- (13) Have Local Binding! (Büring, 2005):

For any two NPs α and β , if α could semantically bind β (i.e. if it c-commands β and β is not semantically bound in α 's c-command domain already), α must semantically bind β , unless that changes the interpretation.

References

Büring, Daniel. 2005. Binding theory. Cambridge University Press.

von Fintel, Kai, and Irene Heim. 2011. Intensional semantics. Manuscript, MIT.

Kotek, Hadas. to appear. On the semantics of *wh*-questions. In *Proceedings of Sinn und Bedeutung* 20.

Rooth, Mats. 1992. A theory of focus interpretation. Natural Language Semantics 1:75–116.

- Sag, Ivan Andrew. 1976. Deletion and logical form. Doctoral Dissertation, Massachusetts Institute of Technology.
- Williams, Edwin. 1974. Rule ordering in syntax. Doctoral Dissertation, Massachusetts Institute of Technology.