Modification and definite descriptions

1 Review of rules

- (1) Terminal Nodes (TN):
 If *α* is a terminal node, [[*α*]] is specified in the lexicon.
- Non-branching Nodes (NN):
 If *α* is a non-branching node, and *β* is its daughter node, then [[*α*]] = [[*β*]].
- (3) Functional Application (FA):
 If *α* is a branching node, {*β*, *γ*} is the set of *α*'s daughters, and [[*β*]] is a function whose domain contains [[*γ*]], then [[*α*]] = [[*β*]]([[*γ*]]).

2 Non-verbal predicates

(4) Kara **is a** cat.

Compositionality allows us to (a) use what we know and (b) work backwards.

(5) Kara sleeps and is a cat.

The semantics for conjunction developed in PS3 (hopefully) is only defined for conjunctions of equal semantic type.¹

- (6) a. Austin is a city and Austin is in Texas.
 - b. Austin is a city and is in Texas.
 - c. Austin is a city and in Texas.
 - d. * Austin is a city and Texas.

3 Modification

- (7) Kara is a black cat.
- (8) Austin is a city in Texas.

Option 1: Intuitively, *black* modifies *cat*. Write a semantics so that [black] modifies [cat] through Functional Application.

Option 2: Add some glue.

¹We may revisit later whether this is a good assumption or not.

(9) **Predicate Modification:**

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both in $D_{\langle e,t \rangle}$, then $[\![\alpha]\!] = \lambda x \in D_e$. $[\![\beta]\!](x) = 1$ and $[\![\gamma]\!] = 1$

4 Definite descriptions and presupposition calculation

- (10) The black cat is in Texas.
- (11) An earlier definition: $\llbracket \text{the} \rrbracket = \lambda P_{\langle e,t \rangle} \cdot \lambda Q_{\langle e,t \rangle} \cdot |P| = 1 \text{ and } P \subseteq Q$

(using set notation for the predicates *P* and *Q*)

Is that what (10) means?

(12) It is not the case that [the black cat is in Texas].

(13) a. I'm on the elevator in AS5.

b. I'm on the escalator in AS5.

(14) $\llbracket \text{the} \rrbracket = \lambda f : f \in D_{\langle e, t \rangle}$ and there is exactly one *x* such that f(x) = 1. the unique *y* such that f(y) = 1

(15) Functional Application (revised; compare to H&K p. 76):²

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, then

- [[α]] is defined if and only if: [[β]] and [[γ]] are both defined and
 [[β]] is a function whose domain contains [[γ]];
- if defined, $\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket (\llbracket \gamma \rrbracket)$.

Exercises:

- (16) The black cat likes the big dog.
- (17) I read the book on the table.

Food for thought:

- (18) a. I saw John's sister.
 - b. Mary is John's sister.
- (19) The black cat is Kara.
- (20) John is the spy.

²H&K describes this in terms of linguistic objects *being in the domain of* [].] rather than being defined or not.