Problem Set 2: ABCDE

Due September 17 at midnight. Submit on IVLE > Files > Student Submission > PS2.

Note: This assignment does *not* have to be written as a short paper, unlike Part 2 of PS1.

In this problem set, we study the "language" ACBDE. ABCDE has five words:

- (1) Lexicon of ABCDE:
 - a. A = [A; uC]
 - b. B = [B]
 - c. C = [C]
 - d. $D = [D; uA, uC^*]$
 - e. E = [E; uB, uC]

For example, the word A has the categorial feature A and has one uninterpretable selectional feature: uC. A sentence of ABCDE is grammatical if it can be built from the words A, B, C, D, E using the operations in (2–4), and ends with no unchecked uninterpretable features. (Here the trees in (2–4) are *ordered*: the left daughter is pronounced before the right daughter.)

(2) **Merge**(α , β):

(read: 'merge β to α ')

(read: 'adjoin β to α ')

(read: ' α attracts β ')

For any syntactic objects α , β , where α bears an unchecked selectional feature F, and β bears a matching categorial feature, call α the head and

- a. check the feature F on α : -F;
- b. let the label γ be the unchecked features of α ; and
- c. return $\gamma \atop \alpha \beta$ if α is a head and $\gamma \atop \beta \alpha$ otherwise.
- (3) **Adjoin**(α , β):

For any syntactic objects α , β , where neither α nor β has any unchecked selectional

feature, call
$$\alpha$$
 the host and return $\gamma \\ \alpha \\ \beta \\ \beta \\ \alpha \\ \beta \\ \alpha$, where the label $\gamma = \alpha$.

```
(4) Move<sub>phrase</sub>(\alpha, \beta)
```

If α is a projection with a feature F, β a maximal projection with a matching feature F, and α contains β , and F is strong (marked F^{*}) on α or β or both, then

- a. check the strong features F^* on α and/or β : F^* ;
- b. mark β in α as deleted: $-\beta$ (call this a trace); and
- c. return $\frac{\gamma}{\beta \alpha}$ where the label γ includes all unchecked features of α .

Your task is to consider the sentences in (5-11) below. For each sentence in (6-11), (i) determine whether or not it is a grammatical sentence of ABCDE and — if it is grammatical — (ii) draw its tree, <u>numbering each node</u> and showing relevant features, and (iii) give the sequence of Merge, Adjoin, and Move_{phrase} steps which derive the sentence. See the example answer for (5) below.

- (5) A B C (see example below)
- (6) C E B
- (7) C B D A
- (8) A B C D
- (9) A C E B
- (10) C D B A
- (11) C D A E B

Example:

(i) Sentence (5) *A B C* is a grammatical sentence of ABCDE.

(ii) A_5 (iii) 2 steps: $A_4[uC] C_3$ (iii) 2 steps: 1. $C_3 = Adjoin(C_1, B_2)$ 2. $A_5 = Merge(A_4, C_3)$ A_5 has no unchecked uninterpretable features and is pronounced *A B C*, so we're done.